robust transmission
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 57)

H-INDEX

24
(FIVE YEARS 6)

2022 ◽  
Vol 206 ◽  
pp. 107785
Author(s):  
Mohammed A. El-Meligy ◽  
Ahmed M. El-Sherbeeny ◽  
Ahmed T.A. Soliman ◽  
Abd E. E. Abd Elgawad ◽  
Emad A. Naser

2021 ◽  
Author(s):  
James M Rowland ◽  
Thijs L van der Plas ◽  
Matthias Loidolt ◽  
Robert Michael Lees ◽  
Joshua Keeling ◽  
...  

The brains of higher organisms are composed of anatomically and functionally distinct regions performing specialised tasks; but regions do not operate in isolation. Orchestration of complex behaviours requires communication between brain regions, but how neural activity dynamics are organised to facilitate reliable transmission is not well understood. We studied this process directly by generating neural activity that propagates between brain regions and drives behaviour, allowing us to assess how populations of neurons in sensory cortex cooperate to transmit information. We achieved this by imaging two hierarchically organised and densely interconnected regions, the primary and secondary somatosensory cortex (S1 and S2) in mice while performing two-photon photostimulation of S1 neurons and assigning behavioural salience to the photostimulation. We found that the probability of perception is determined not only by the strength of the photostimulation signal, but also by the variability of S1 neural activity. Therefore, maximising the signal-to-noise ratio of the stimulus representation in cortex is critical to its continued propagation downstream. Further, we show that propagated, behaviourally salient activity elicits balanced, persistent, and generalised activation of the downstream region. Hence, our work adds to existing understanding of cortical function by identifying how population activity is formatted to ensure robust transmission of information, allowing specialised brain regions to communicate and coordinate behaviour.


2021 ◽  
Author(s):  
Ketaki Ganti ◽  
Lucas M. Ferreri ◽  
Chung-Young Lee ◽  
Camden R. Bair ◽  
Gabrielle K. Delima ◽  
...  

AbstractTransmission efficiency is a critical factor determining the size of an outbreak of infectious disease. Indeed, the propensity of SARS-CoV-2 to transmit among humans precipitated and continues to sustain the COVID-19 pandemic. Nevertheless, the number of new cases among contacts is highly variable and underlying reasons for wide-ranging transmission outcomes remain unclear. Here, we evaluated viral spread in golden Syrian hamsters to define the impact of temporal and environmental conditions on the efficiency of SARS-CoV-2 transmission through the air. Our data show that exposure periods as brief as one hour are sufficient to support robust transmission. However, the timing after infection is critical for transmission success, with the highest frequency of transmission to contacts occurring at times of peak viral load in the donor animals. Relative humidity and temperature had no detectable impact on transmission when exposures were carried out with optimal timing. However, contrary to expectation, trends observed with sub-optimal exposure timing suggest improved transmission at high relative humidity or high temperature. In sum, among the conditions tested, our data reveal the timing of exposure to be the strongest determinant of SARS-CoV-2 transmission success and implicate viral load as an important driver of transmission.


2021 ◽  
Vol 95 ◽  
pp. 107385
Author(s):  
A. Mohan ◽  
A. Anand ◽  
A.K. Singh ◽  
R. Dwivedi ◽  
B. Kumar

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Belén Marín ◽  
Alicia Otero ◽  
Séverine Lugan ◽  
Juan Carlos Espinosa ◽  
Alba Marín-Moreno ◽  
...  

AbstractPigs are susceptible to infection with the classical bovine spongiform encephalopathy (C-BSE) agent following experimental inoculation, and PrPSc accumulation was detected in porcine tissues after the inoculation of certain scrapie and chronic wasting disease isolates. However, a robust transmission barrier has been described in this species and, although they were exposed to C-BSE agent in many European countries, no cases of natural transmissible spongiform encephalopathies (TSE) infections have been reported in pigs. Transmission of atypical scrapie to bovinized mice resulted in the emergence of C-BSE prions. Here, we conducted a study to determine if pigs are susceptible to atypical scrapie. To this end, 12, 8–9-month-old minipigs were intracerebrally inoculated with two atypical scrapie sources. Animals were euthanized between 22- and 72-months post inoculation without clinical signs of TSE. All pigs tested negative for PrPSc accumulation by enzyme immunoassay, immunohistochemistry, western blotting and bioassay in porcine PrP mice. Surprisingly, in vitro protein misfolding cyclic amplification demonstrated the presence of C-BSE prions in different brain areas from seven pigs inoculated with both atypical scrapie isolates. Our results suggest that pigs exposed to atypical scrapie prions could become a reservoir for C-BSE and corroborate that C-BSE prions emerge during interspecies passage of atypical scrapie.


Sign in / Sign up

Export Citation Format

Share Document