antibody fragments
Recently Published Documents


TOTAL DOCUMENTS

1212
(FIVE YEARS 141)

H-INDEX

75
(FIVE YEARS 8)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Keith F DeLuca ◽  
Jeanne E Mick ◽  
Amy Hodges Ide ◽  
Wanessa C Lima ◽  
Lori Sherman ◽  
...  

Antibodies are indispensable tools used for a large number of applications in both foundational and translational bioscience research; however, there are drawbacks to using traditional antibodies generated in animals. These include a lack of standardization leading to problems with reproducibility, high costs of antibodies purchased from commercial sources, and ethical concerns regarding the large number of animals used to generate antibodies. To address these issues, we have developed practical methodologies and tools for generating low-cost, high-yield preparations of recombinant monoclonal antibodies and antibody fragments directed to protein epitopes from primary sequences. We describe these methods here, as well as approaches to diversify monoclonal antibodies, including customization of antibody species specificity, generation of genetically encoded small antibody fragments, and conversion of single chain antibody fragments (e.g. scFv) into full-length, bivalent antibodies. This study focuses on antibodies directed to epitopes important for mitosis and kinetochore function; however, the methods and reagents described here are applicable to antibodies and antibody fragments for use in any field.


2021 ◽  
Author(s):  
Anna R Mäkelä ◽  
Hasan Uğurlu ◽  
Liina Hannula ◽  
Petja Salminen ◽  
Ravi Kant ◽  
...  

The emergence of the SARS-CoV-2 Omicron variant capable of escaping neutralizing antibodies emphasizes the need for prophylactic strategies to complement vaccination in fighting the COVID-19 pandemic. Nasal epithelium is rich in the ACE2 receptor and important for SARS-CoV-2 transmission by supporting early viral replication before seeding to the lung. Intranasal administration of SARS-CoV-2 neutralizing antibodies or antibody fragments has shown encouraging potential as a protective measure in animal models. However, there remains a need for SARS-CoV-2 blocking agents that are more economical to produce in large scale, while less vulnerable to mutational variation in the neutralization epitopes of the viral Spike glycoprotein. Here we describe TriSb92, a highly manufacturable trimeric human nephrocystin SH3 domain-derived antibody mimetic targeted against a conserved region in the receptor-binding domain of the Spike. TriSb92 potently neutralizes SARS-CoV-2 and its variants of concern, including Delta and Omicron. Intranasal administration of a modest dose of TriSb92 (5 or 50 micrograms) as early as eight hours before the challenge with SARS-CoV-2 B.1.351 efficiently protected mice from infection. The target epitope of TriSb92 was defined by cryo-EM, which revealed triggering of a conformational shift in the Spike trimer rather than competition for ACE2 binding as the molecular basis of its strong inhibitory action. Our results highlight the potential of intranasal inhibitors in protecting susceptible individuals from SARS-CoV-2 infection, and describe a novel type of inhibitor that could be of use in addressing the challenge posed by the Omicron variant.


2021 ◽  
Author(s):  
Kalle Saksela ◽  
Anna Mäkelä ◽  
Hasan Ugurlu ◽  
Liina Hanula ◽  
Petja Salminen ◽  
...  

Abstract The emergence of the SARS-CoV-2 Omicron variant capable of escaping neutralizing antibodies emphasizes the need for prophylactic strategies to complement vaccination in fighting the COVID-19 pandemic. Nasal epithelium is rich in the ACE2 receptor and important for SARS-CoV-2 transmission by supporting early viral replication before seeding to the lung1. Intranasal administration of SARS-CoV-2 neutralizing antibodies or antibody fragments has shown encouraging potential as a protective measure in animal models2-5. However, there remains a need for SARS-CoV-2 blocking agents that are more economical to produce in large scale, while less vulnerable to mutational variation in the neutralization epitopes of the viral Spike glycoprotein. Here we describe TriSb92, a highly manufacturable trimeric human nephrocystin SH3 domain-derived antibody mimetic targeted against a conserved region in the receptor-binding domain of the Spike. TriSb92 potently neutralizes SARS-CoV-2 and its variants of concern, including Delta and Omicron. Intranasal administration of a modest dose of TriSb92 (5 or 50 micrograms) as early as eight hours before the challenge with SARS-CoV-2 B.1.351 efficiently protected mice from infection. The target epitope of TriSb92 was defined by cryo-EM, which revealed triggering of a conformational shift in the Spike trimer rather than competition for ACE2 binding as the molecular basis of its strong inhibitory action. Our results highlight the potential of intranasal inhibitors in protecting susceptible individuals from SARS-CoV-2 infection, and describe a novel type of inhibitor that could be of use in addressing the challenge posed by the Omicron variant.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 26
Author(s):  
Seth-Frerich Fobian ◽  
Ziyun Cheng ◽  
Timo L. M. ten Hagen

Cancer immunotherapy, a promising and widely applied mode of oncotherapy, makes use of immune stimulants and modulators to overcome the immune dysregulation present in cancer, and leverage the host’s immune capacity to eliminate tumors. Although some success has been seen in this field, toxicity and weak immune induction remain challenges. Liposomal nanosystems, previously used as targeting agents, are increasingly functioning as immunotherapeutic vehicles, with potential for delivery of contents, immune induction, and synergistic drug packaging. These systems are tailorable, multifunctional, and smart. Liposomes may deliver various immune reagents including cytokines, specific T-cell receptors, antibody fragments, and immune checkpoint inhibitors, and also present a promising platform upon which personalized medicine approaches can be built, especially with preclinical and clinical potentials of liposomes often being frustrated by inter- and intrapatient variation. In this review, we show the potential of liposomes in cancer immunotherapy, as well as the methods for synthesis and in vivo progression thereof. Both preclinical and clinical studies are included to comprehensively illuminate prospects and challenges for future research and application.


2021 ◽  
Author(s):  
Martin A Rossotti ◽  
Henk van Faassen ◽  
Anh Tran ◽  
Joey Sheff ◽  
Jagdeep A Sandhu ◽  
...  

Nanobodies offer several potential advantages over mAbs for the control of SARS-CoV-2. Their ability to access cryptic epitopes conserved across SARS-CoV-2 variants of concern (VoCs) and feasibility to engineer modular, multimeric designs, make these antibody fragments ideal candidates for developing broad-spectrum therapeutics against current and continually emerging SARS-CoV-2 VoCs. Here we describe a diverse collection of 37 anti-SARS-CoV-2 spike glycoprotein nanobodies extensively characterized as both monovalent and IgG Fc-fused bivalent modalities. The panel of nanobodies were shown to have high intrinsic affinity; high thermal, thermodynamic and aerosolization stability; broad subunit/domain specificity and cross-reactivity across many VoCs; wide-ranging epitopic and mechanistic diversity; high and broad in vitro neutralization potencies; and high neutralization efficacies in hamster models of SARS-CoV-2 infection, reducing viral burden by up to six orders of magnitude to below detectable levels. In vivo protection was demonstrated with anti-RBD and previously unreported anti-NTD and anti-S2 nanobodies. This collection of nanobodies provides a therapeutic toolbox from which various cocktails or multi-paratopic formats could be built to tackle current and future SARS-CoV-2 variants and SARS-related viruses. Furthermore, the high aerosol-ability of nanobodies provides the option for effective needle-free delivery through inhalation.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yasaman Asaadi ◽  
Fatemeh Fazlollahi Jouneghani ◽  
Sara Janani ◽  
Fatemeh Rahbarizadeh

AbstractBy the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.


BioTechniques ◽  
2021 ◽  
Author(s):  
Yoshiro Hanyu ◽  
Mieko Kato

High-yield expression of quality antibody fragments is indispensable for research and diagnosis. Most recombinant antibody fragments are expressed in Escherichia coli using liquid cultures; however, their yields and quality are often poor. Here the authors expressed a single-chain variable fragment in E. coli cultivated on the wet surface of a solid support. Compared with a liquid culture, the authors obtained 2.5-times more single-chain variable fragments with membrane-cultivated E. coli. This method has two important advantages: it enables high yields of periplasmic single-chain variable fragments compared with liquid culture and offers simple and rapid expression and extraction.


2021 ◽  
Author(s):  
Andrew C Hunt ◽  
Bastian Vogeli ◽  
Weston K. Kightlinger ◽  
Danielle J. Yoesep ◽  
Antje Kruger ◽  
...  

Antibody discovery is bottlenecked by the individual expression and evaluation of antigen- specific hits. Here, we address this gap by developing an automated workflow combining cell-free DNA template generation, protein synthesis, and high-throughput binding measurements of antibody fragments in a process that takes hours rather than weeks. We apply this workflow to 119 published SARS-CoV-2 neutralizing antibodies and demonstrate rapid identification of the most potent antibody candidates.


Author(s):  
Imad Ahmad Ibrahim ◽  
Raghad Abdullah Alotaibi ◽  
Abdalah Emad Almhmd ◽  
Rahaf Ibrahim Alghamdi ◽  
Adnan Tawfiq Almogbel ◽  
...  

Cardiac glycosides, including digitalis and digoxin, have long-standing use in clinical practice. Digoxin has a half-life that varies from 36 to 48 hours, which may increase in cases of renal failure. Approximately 1% of Congestive Heart Failure patients treated with digoxin develop toxicity. The clinical features of toxicity are often non-specific. Diagnosis is difficult and usually made clinically, as levels of digoxin in the blood do not necessarily correlate with toxicity. Treatment involves early recognition and the administration of antibodies specifically against digoxin also known as Fab fragments. Digoxin concentration does not necessarily correlate with clinical symptoms of toxicity however digoxin concentrations may be used for calculating the amount of antidote therapy. Digoxin-specific antibody fragments are used when there is a risk of a life-threatening arrhythmia.


Author(s):  
Victor M. Baart ◽  
Labrinus van Manen ◽  
Shadhvi S. Bhairosingh ◽  
Floris A. Vuijk ◽  
Luisa Iamele ◽  
...  

Abstract Purpose Radical resection is paramount for curative oncological surgery. Fluorescence-guided surgery (FGS) aids in intraoperative identification of tumor-positive resection margins. This study aims to assess the feasibility of urokinase plasminogen activator receptor (uPAR) targeting antibody fragments for FGS in a direct comparison with their parent IgG in various relevant in vivo models. Procedures Humanized anti-uPAR monoclonal antibody MNPR-101 (uIgG) was proteolytically digested into F(ab’)2 and Fab fragments named uFab2 and uFab. Surface plasmon resonance (SPR) and cell assays were used to determine in vitro binding before and after fluorescent labeling with IRDye800CW. Mice bearing subcutaneous HT-29 human colonic cancer cells were imaged serially for up to 120 h after fluorescent tracer administration. Imaging characteristics and ex vivo organ biodistribution were further compared in orthotopic pancreatic ductal adenocarcinoma (BxPc-3-luc2), head-and-neck squamous cell carcinoma (OSC-19-luc2-GFP), and peritoneal carcinomatosis (HT29-luc2) models using the clinical Artemis fluorescence imaging system. Results Unconjugated and conjugated uIgG, uFab2, and uFab specifically recognized uPAR in the nanomolar range as determined by SPR and cell assays. Subcutaneous tumors were clearly identifiable with tumor-to-background ratios (TBRs) > 2 after 72 h for uIgG-800F and 24 h for uFab2-800F and uFab-800F. For the latter two, mean fluorescence intensities (MFIs) dipped below predetermined threshold after 72 h and 36 h, respectively. Tumors were easily identified in the orthotopic models with uIgG-800F consistently having the highest MFIs and uFab2-800F and uFab-800F having similar values. In biodistribution studies, kidney and liver fluorescence approached tumor fluorescence after uIgG-800F administration and surpassed tumor fluorescence after uFab2-800F or uFab-800F administration, resulting in interference in the abdominal orthotopic mouse models. Conclusions In a side-by-side comparison, FGS with uPAR-targeting antibody fragments compared with the parent IgG resulted in earlier tumor visualization at the expense of peak fluorescence intensity.


Sign in / Sign up

Export Citation Format

Share Document