scanning electronic microscopy
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 57)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 0 (4) ◽  
pp. 41-47
Author(s):  
O.A. SELDIMIROVA ◽  

The processes of formation different types of calli, as well as the morphogenesis pathways in morphogenic calli, were studied by scanning electron microscopy (SEM) during anther culture in vitro in hybrid line Fotos of spring soft wheat. The microspore haploid origin of calli has been proven. The morphological status of the obtained calli was determined. It was shown that morphogenic callus consists of small densely packed meristematic cells covered with extracellular substance. This type of calli was obtained using a variant of the Potato II induction culture medium, added by 1.0 mg/l synthetic auxin 2,4-D. Nonmorphogenic callus consists of large, elongated, loosely located cells with a smooth surface. This type of calli was obtained using a variant of the Potato II culture medium, added by 2.0 mg/l 2,4-D. It was found that the introduction of various IAA concentrations into the Blaydes nutrient medium for regeneration in morphogenic calli implements the following pathways of morphogenesis in vitro: embryoidogenesis (without IAA addition), gemmorhizogenesis (0.5 mg/l), and rhizogenesis (1.5 mg/l). Revealed degenerative changes in cells of nonmorphogenic calli. The fundamental possibility of regulating of the morphogenesis pathways of in vitro of morphogenic calli in the direction necessary for research in biotechnological research has been confirmed.


Author(s):  
J. Pinot ◽  
R. Botrel ◽  
F. Durut ◽  
L. Reverdy ◽  
L. Pescayre ◽  
...  

The aim of our work is to understand the mechanism governing the growth of metallic foams synthetized by plasma electrolysis deposition. This paper reports the influence of the applied voltage on the morphology and microstructure of copper and gold foams. The evolution of strands morphology and size is investigated by field emission scanning electronic microscopy (FE-SEM). The role of the voltage in the growth of metallic foams is then discussed. Finally, the crystalline structure of the strands is determined by transmission electronic microscopy (TEM) and selected area electron diffraction.


2021 ◽  
Vol 24 (4) ◽  
pp. 1-6
Author(s):  
Emad Alhaydary ◽  
◽  
Emad Yousif ◽  

Herein successfully synthesized new organotin(IV) complexBu2SnOL by reacting sulfamethoxazole drug as a ligand with dibutyltin (IV) oxide. The synthesized complex was fully characterized by Fourier transform infrared, 1proton nuclear magnetic resonance, 13carbon nuclear magnetic resonance, 119tin nuclear magnetic resonance and ultraviolet-visible spectroscopies. Field emission scanning electronic microscopy was also applied to study the surface morphology of synthesized complex. The above techniques have demonstrated that the complex was prepared with high percentage of purity. This type of compound has various applications in medicine and industry. For example, using it as photo–stabilizer of different plastic polymers (polyvinyl chloride, polystyrene and polyvinyl alcohol).


2021 ◽  
Vol 2094 (4) ◽  
pp. 042088
Author(s):  
A V Ozolin ◽  
E G Sokolov

Abstract The effect of tungsten nanoparticles on the kinetics of sintering of the Sn-Cu-Co-W powder material used as a binder in diamond tools was studied. The W16,5 grade tungsten powder was mechanically activated in the AGO-2U planetary centrifugal mill for 60 minutes at the carrier rotation frequencies of 800 RPM. The mixture of tungsten, tin, copper, and cobalt powders was compacted by static pressing in press dies and then sintered in vacuum at the temperature of 820°C. The morphology and sizes of powder particles, as well as the structure of the sintered samples, were studied by the methods of scanning electronic microscopy. It has been demonstrated that tungsten nanoparticles have a noticeable effect on the process of dissolution-reprecipitation of cobalt in liquid-phase sintering.


Conjecturas ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 142-181
Author(s):  
Victor Marcelo Estolano de Lima ◽  
Stela Fucale ◽  
Amanda Marques Lopes Estolano ◽  
Romildo Alves Berenguer ◽  
Nathan Bezerra de Lima ◽  
...  

This article evaluates the feasibility of using concrete waste from precast production as recycled aggregate in concrete. The processing of concrete waste employed a jaw-hammer crusher and a sieve, producing three types of Recycled Concrete Aggregate (RCA). After their characterization, RCA was incorporated in two types of concrete used in the precast factory: a flowing concrete (FC), slump 220 mm, employed in columns and beams; and the second one, a no-slump extruded concrete (NSC), used for hollow core slabs. X-Ray diffraction, thermogravimetric analysis and scanning electronic microscopy showed phases from the hydrated cement paste and the original aggregate. Results of mechanical performance showed that RCA did not influence the compressive strength but influenced other properties such as water absorption and modulus of elasticity. Lastly, it was concluded that RCA obtained in the precast factory showed great potential to be used within the factory production process.


2021 ◽  
Vol 13 (16) ◽  
pp. 9269
Author(s):  
Saddam Hussein Abo Sabah ◽  
Luis Hii Anneza ◽  
Mohd Irwan Juki ◽  
Hisham Alabduljabbar ◽  
Norzila Othman ◽  
...  

This study investigated the optimization of the bioconcrete engineering properties and durability as a response of the calcium lactate (CL) content (0.22–2.18 g/L) and curing duration (7–28 days) using the response surface methodology (RSM). Scanning electronic microscopy (SEM) was conducted to evaluate the microstructure of calcium precipitated inside the bioconcrete. The results indicated that the optimal conditions for the engineering properties of concrete and durability were determined at 2.18 g/L of CL content after 23.4 days. The actual and predicted values of the compressive strength, splitting tensile strength, flexural strength, and water absorption were 43.51 vs. 43.43, 3.19 vs. 3.19, 6.93 vs. 5.50, and 7.55 vs. 7.55, respectively, with a level of confidence exceeding 95%. The scanning electron microscope (SEM) images and energy-dispersive X-ray spectroscopy (EDX) proved that the amount of calcium increased with the increase in CL content up to 2.81 g/L at 23.4 days, reducing the pores inside the concrete and making it a great potential option for healing of concrete structures.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4575
Author(s):  
Abdullah Faisal Alshalif ◽  
J. M. Irwan ◽  
Husnul Azan Tajarudin ◽  
N. Othman ◽  
A. A. Al-Gheethi ◽  
...  

This research aimed to optimize the compressive strength of bio-foamed concrete brick (B-FCB) via a combination of the natural sequestration of CO2 and the bio-reaction of B. tequilensis enzymes. The experiments were guided by two optimization methods, namely, 2k factorial and response surface methodology (RSM). The 2k factorial analysis was carried out to screen the important factors; then, RSM analysis was performed to optimize the compressive strength of B-FCB. Four factors, namely, density (D), B. tequilensis concentration (B), temperature (T), and CO2 concentration, were selectively varied during the study. The optimum compressive strength of B-FCB was 8.22 MPa, as deduced from the following conditions: 10% CO2, 3 × 107 cell/mL of B, 27 °C of T and 1800 kg/m3 of D after 28 days. The use of B. tequilensis in B-FCB improved the compressive strength by 35.5% compared to the foamed concrete brick (FCB) after 28 days. A microstructure analysis by scanning electronic microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction analysis (XRD) reflected the changes in chemical element levels and calcium carbonate (CaCO3) precipitation in the B-FCB pores. This was due to the B. tequilensis surface reactions of carbonic anhydrase (CA) and urease enzyme with calcium in cement and sequestered CO2 during the curing time.


2021 ◽  
Vol 894 ◽  
pp. 45-49
Author(s):  
Rosanna Viscardi ◽  
Vincenzo Barbarossa ◽  
Raimondo Maggi ◽  
Francesco Pancrazzi

DME has been received the attention as a renewable energy due to its thermal efficiencies equivalent to diesel fuel, lower NOx emission, near-zero smoke and non-toxic. DME can be obtained by methanol dehydration over solid acid catalysts or directly from syngas over bifunctional catalysts. The catalytic dehydration of methanol to DME has been widely studied in the literature over pure or modified γ -aluminas (γ-Al2O3) and zeolites. Mesoporous silica has obtained much consideration due to its well-defined structural order, high surface area, and tunable pore diameter. In this work, sulfonic acid and aluminium modified mesoporous silica were synthesized and tested as catalysts for production of dimethyl ether from methanol. The modified silicas were studied utilizing XRD, N2 physisorption, pyridine adsorption, and scanning electronic microscopy. The effects of reaction temperature and water deactivation on the methanol selectivity and conversion to dimethyl ether were investigated. Sulfonic acid modified mesoporous silica showed higher selectivity and stability of DME than that of aluminosilicate. The grafting of mesoporous silica with sulfonic groups displayed much more enhanced hydrothermal stability than Al-MCM-41 and γ-Al2O3.


2021 ◽  
pp. 002199832110312
Author(s):  
Natalia Cardona-Vivas ◽  
Mauricio A Correa ◽  
Henry A Colorado

A new multifunctional composite material manufactured from vinyl-acrylic resin and mixed with battery waste powders containing graphite, manganese oxide, and zinc oxide particles has been developed. The battery waste (BW) was obtained from a recycling company as a byproduct from the grinding process of primary batteries (alkaline and zinc carbon batteries). In addition, 24 and 28 AWG copper wires (CuW) were obtained from recycling circuit waste, which were added in 5, 10 and 15 wt% contents to form composite materials, with all CuW of 2 mm length. These formulations were characterized using scanning electronic microscopy, compression, density, and piezoresistivity tests. When copper was added to the composite material, the behavior of the sensor was linear, a characteristic desired in piezoresistive sensors since they do not need any additional configuration to obtain said linearity. As the percentage of copper increased, the sensitivity of the sensor decreased and the conductivity increased.


Author(s):  
Tian Li ◽  
Zhuoya Fang ◽  
Qiang He ◽  
Chunxia Wang ◽  
Xianzhi Meng ◽  
...  

Microsporidia are a group of obligated intracellular parasites that can infect nearly all vertebrates and invertebrates, including humans and economic animals. Microsporidian Vairimorpha necatrix is a natural pathogen of multiple insects and can massively proliferate by making tumor-like xenoma in host tissue. However, little is known about the subcellular structures of this xenoma and the proliferation features of the pathogens inside. Here, we characterized the V. necatrix xenoma produced in muscle cells of silkworm midgut. In result, the whitish xenoma was initially observed on the 12th day post infection on the outer surface of the midgut and later became larger and numerous. The observation by scanning electronic microscopy showed that the xenoma is mostly elliptical and spindle with dense pathogen-containing protrusions and spores on the surface, which were likely shedding off the xenoma through exocytosis and could be an infection source of other tissues. Demonstrated with transmission electron microscopy and fluorescent staining, the xenoma was enveloped by a monolayer membrane, and full of vesicle structures, mitochondria, and endoplasmic reticulum around parasites in development, suggesting that high level of energy and nutrients were produced to support the massive proliferation of the parasites. Multiple hypertrophic nuclei were found in one single xenoma, indicating that the cyst was probably formed by fusion of multiple muscle cells. Observed by fluorescence in situ hybridization, pathogens in the xenoma were in merongony, sporogony, and octosporogony, and mature stages. And mature spores were pushed to the center while vegetative pathogens were in the surface layer of the xenoma. The V. necatrix meront usually contained two to three nuclei, and sporont contained two nuclei and was wrapped by a thick membrane with high electron density. The V. necatrix sporogony produces two types of spores, the ordinary dikaryotic spore and unicellular octospores, the latter of which were smaller in size and packed in a sporophorous vesicle. In summary, V. necatrix xenoma is a specialized cyst likely formed by fusion of multiple muscle cells and provides high concentration of energy and nutrients with increased number of mitochondria and endoplasmic reticulum for the massive proliferation of pathogens inside.


Sign in / Sign up

Export Citation Format

Share Document