cooperative relay network
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 18)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
Thanh-Luan Nguyen ◽  
Duy-Hung Ha ◽  
Phu Tran Tin ◽  
Hien Dinh Cong

This paper studies a cooperative relay network that comprises an unmanned aerial vehicle (UAV) enabling amplify-and-forward (AF) and power splitting (PS) based energy harvesting. The considered system can be constructed in various environments such as suburban, urban, dense urban, and high-rise urban where the air-to-ground channels are model by a mixture of Rayleigh and Nakagami-m fading. Then, outage probability and ergodic capacity are provided under different environment-based parameters. Optimal PS ratios are also provided under normal and high transmit power regimes. Finally, the accuracy of the analytical results is validated through Monte Carlo methods.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5720
Author(s):  
Ninghao Zhou ◽  
Jinfeng Hu ◽  
Jia Hou

In order to improve the energy efficiency (EE) performance of cooperative networks, this study combines non-orthogonal multiple access (NOMA) with simultaneous wireless information and power transfer (SWIPT) technologies to construct a cooperative relay network composed of one base station (BS), multiple near users, and one far user. Based on the network characteristics, a time-division resource allocation rule is proposed, and EE formulas regarding direct-link mode and cooperative mode are derived. Considering user selection and decoding performance, to obtain the optimal EE, this study utilizes a DinkelBach iterative algorithm based on the golden section (GS-DinkelBach) to solve the EE optimization problem, which is affected by power transmitted from the BS, achievable rates under three communication links, and quality of service (QoS) constraints of users. The simulation results show that the GS-DinkelBach algorithm can obtain precise EE gains with low computational complexity. Compared with the traditional NOMA–SWIPT direct-link network model and the relay network model, the optimal EE of the established network model could be increased by 0.54 dB and 1.66 dB, respectively.


2019 ◽  
Vol 23 (10) ◽  
pp. 1721-1724 ◽  
Author(s):  
Parvez Shaik ◽  
Praveen Kumar Singya ◽  
Vimal Bhatia

Sign in / Sign up

Export Citation Format

Share Document