endogenous proteins
Recently Published Documents


TOTAL DOCUMENTS

443
(FIVE YEARS 153)

H-INDEX

50
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Lewis A Macdonald ◽  
Gillian C A Taylor ◽  
Jennifer M Brisbane ◽  
Ersi Christodoulou ◽  
Lucy Scott ◽  
...  

Auxin-inducible degrons are a chemical genetic tool for targeted protein degradation and are widely used to study protein function in cultured mammalian cells. Here we develop CRISPR-engineered mouse lines that enable rapid and highly specific degradation of tagged endogenous proteins in vivo. Most but not all cell types are competent for degradation. Using mouse genetics, we show that degradation kinetics depend upon the dose of the tagged protein, ligand, and the E3 ligase subunit Tir1. Rapid degradation of condensin I and condensin II, two essential regulators of mitotic chromosome structure, revealed that both complexes are individually required for cell division in precursor lymphocytes, but not in their differentiated peripheral lymphocyte derivatives. This generalisable approach provides unprecedented temporal control over the dose of endogenous proteins in mouse models, with implications for studying essential biological pathways and modelling drug activity in mammalian tissues.


Author(s):  
Dragomir B. Krastev ◽  
Shudong Li ◽  
Yilun Sun ◽  
Andrew J. Wicks ◽  
Gwendoline Hoslett ◽  
...  

AbstractPoly (ADP-ribose) polymerase (PARP) inhibitors elicit antitumour activity in homologous recombination-defective cancers by trapping PARP1 in a chromatin-bound state. How cells process trapped PARP1 remains unclear. Using wild-type and a trapping-deficient PARP1 mutant combined with rapid immunoprecipitation mass spectrometry of endogenous proteins and Apex2 proximity labelling, we delineated mass spectrometry-based interactomes of trapped and non-trapped PARP1. These analyses identified an interaction between trapped PARP1 and the ubiquitin-regulated p97 ATPase/segregase. We found that following trapping, PARP1 is SUMOylated by PIAS4 and subsequently ubiquitylated by the SUMO-targeted E3 ubiquitin ligase RNF4, events that promote recruitment of p97 and removal of trapped PARP1 from chromatin. Small-molecule p97-complex inhibitors, including a metabolite of the clinically used drug disulfiram (CuET), prolonged PARP1 trapping and enhanced PARP inhibitor-induced cytotoxicity in homologous recombination-defective tumour cells and patient-derived tumour organoids. Together, these results suggest that p97 ATPase plays a key role in the processing of trapped PARP1 and the response of tumour cells to PARP inhibitors.


2022 ◽  
Author(s):  
Wouter J Droogers ◽  
Jelmer Willems ◽  
Harold D MacGillavry ◽  
Arthur PH de Jong

Recent advances in CRISPR/Cas9-mediated knock-in methods enable labeling of individual endogenous proteins with fluorophores, to determine their spatiotemporal expression in intact biological preparations. However, multiplex knock-in methods remain limited, particularly in postmitotic cells, due to a high degree of crosstalk between genome editing events. We present Conditional Activation of Knock-in Expression (CAKE), which delivers efficient, flexible and accurate multiplex genome editing in neurons. CAKE is based on sequential gRNA expression operated by a Cre- or Flp-recombinase to control the time window for genomic integration of each donor sequence, which diminishes crosstalk between genome editing events. Importantly, CAKE is compatible with multiple CRISPR/Cas9 strategies, and we show the utilization of CAKE for co-localization of various endogenous proteins, including synaptic scaffolds, ion channels and neurotransmitter receptor subunits. Knock-in efficacy was highly sensitive to DNA vector amount, while knock-in crosstalk was dependent on the rate of donor DNA integration and timing of Cre activation. We applied CAKE to study the co-distribution of endogenous synaptic proteins using dual-color single-molecule localization microscopy, and we introduced dimerization modules to acutely control synaptic receptor dynamics in living neurons. Taken together, CAKE is a versatile method for multiplex protein labeling, enabling accurate detection, precise localization and acute manipulation of endogenous proteins in single cells.


Author(s):  
Michael J. Ziegler ◽  
Klaus Yserentant ◽  
Valentin Dunsing ◽  
Volker Middel ◽  
Antoni J. Gralak ◽  
...  

AbstractDirect control of protein interactions by chemically induced protein proximity holds great potential for both cell and synthetic biology as well as therapeutic applications. Low toxicity, orthogonality and excellent cell permeability are important criteria for chemical inducers of proximity (CIPs), in particular for in vivo applications. Here, we present the use of the agrochemical mandipropamid (Mandi) as a highly efficient CIP in cell culture systems and living organisms. Mandi specifically induces complex formation between a sixfold mutant of the plant hormone receptor pyrabactin resistance 1 (PYR1) and abscisic acid insensitive (ABI). It is orthogonal to other plant hormone-based CIPs and rapamycin-based CIP systems. We demonstrate the applicability of the Mandi system for rapid and efficient protein translocation in mammalian cells and zebrafish embryos, protein network shuttling and manipulation of endogenous proteins.


Author(s):  
Sara Benhammouda ◽  
Anjali Vishwakarma ◽  
Priya Gatti ◽  
Marc Germain

Organelles cooperate with each other to regulate vital cellular homoeostatic functions. This occurs through the formation of close connections through membrane contact sites. Mitochondria-Endoplasmic-Reticulum (ER) contact sites (MERCS) are one of such contact sites that regulate numerous biological processes by controlling calcium and metabolic homeostasis. However, the extent to which contact sites shape cellular biology and the underlying mechanisms remain to be fully elucidated. A number of biochemical and imaging approaches have been established to address these questions, resulting in the identification of a number of molecular tethers between mitochondria and the ER. Among these techniques, fluorescence-based imaging is widely used, including analysing signal overlap between two organelles and more selective techniques such as in-situ proximity ligation assay (PLA). While these two techniques allow the detection of endogenous proteins, preventing some problems associated with techniques relying on overexpression (FRET, split fluorescence probes), they come with their own issues. In addition, proper image analysis is required to minimise potential artefacts associated with these methods. In this review, we discuss the protocols and outline the limitations of fluorescence-based approaches used to assess MERCs using endogenous proteins.


2021 ◽  
Vol 2 (4) ◽  
pp. 101000
Author(s):  
Alissa D. Guarnaccia ◽  
April M. Weissmiller ◽  
William P. Tansey

Author(s):  
Rambabu N. Reddi ◽  
Adi Rogel ◽  
Efrat Resnick ◽  
Ronen Gabizon ◽  
Pragati Kishore Prasad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document