gap filling
Recently Published Documents


TOTAL DOCUMENTS

726
(FIVE YEARS 270)

H-INDEX

38
(FIVE YEARS 9)

2022 ◽  
pp. 152393
Author(s):  
Ahmet Engin Pazarçeviren ◽  
Sema Akbaba ◽  
Ayşen Tezcaner ◽  
Dilek Keskin ◽  
Zafer Evis
Keyword(s):  

2022 ◽  
Vol 60 ◽  
pp. 1-1
Author(s):  
Alexandre Hippert-Ferrer ◽  
Yajing Yan ◽  
Philippe Bolon
Keyword(s):  

2021 ◽  
Vol 33 (6) ◽  
pp. 333-344
Author(s):  
Hong-Yeon Cho ◽  
Gi-Seop Lee ◽  
Uk-Jae Lee

Technique for the long-gap filling that occur frequently in ocean monitoring data is developed. The method estimates the unknown values of the long-gap by the summation of the estimated trend and selected residual components of the given missing intervals. The method was used to impute the data of the long-term missing interval of about 1 month, such as temperature and water temperature of the Ulleungdo ocean buoy data. The imputed data showed differences depending on the monitoring parameters, but it was found that the variation pattern was appropriately reproduced. Although this method causes bias and variance errors due to trend and residual components estimation, it was found that the bias error of statistical measure estimation due to long-term missing is greatly reduced. The mean, and the 90% confidence intervals of the gap-filling model’s RMS errors are 0.93 and 0.35~1.95, respectively.


2021 ◽  
Vol 14 (1) ◽  
pp. 146
Author(s):  
Matías Salinero-Delgado ◽  
José Estévez ◽  
Luca Pipia ◽  
Santiago Belda ◽  
Katja Berger ◽  
...  

Monitoring cropland phenology from optical satellite data remains a challenging task due to the influence of clouds and atmospheric artifacts. Therefore, measures need to be taken to overcome these challenges and gain better knowledge of crop dynamics. The arrival of cloud computing platforms such as Google Earth Engine (GEE) has enabled us to propose a Sentinel-2 (S2) phenology end-to-end processing chain. To achieve this, the following pipeline was implemented: (1) the building of hybrid Gaussian Process Regression (GPR) retrieval models of crop traits optimized with active learning, (2) implementation of these models on GEE (3) generation of spatiotemporally continuous maps and time series of these crop traits with the use of gap-filling through GPR fitting, and finally, (4) calculation of land surface phenology (LSP) metrics such as the start of season (SOS) or end of season (EOS). Overall, from good to high performance was achieved, in particular for the estimation of canopy-level traits such as leaf area index (LAI) and canopy chlorophyll content, with normalized root mean square errors (NRMSE) of 9% and 10%, respectively. By means of the GPR gap-filling time series of S2, entire tiles were reconstructed, and resulting maps were demonstrated over an agricultural area in Castile and Leon, Spain, where crop calendar data were available to assess the validity of LSP metrics derived from crop traits. In addition, phenology derived from the normalized difference vegetation index (NDVI) was used as reference. NDVI not only proved to be a robust indicator for the calculation of LSP metrics, but also served to demonstrate the good phenology quality of the quantitative trait products. Thanks to the GEE framework, the proposed workflow can be realized anywhere in the world and for any time window, thus representing a shift in the satellite data processing paradigm. We anticipate that the produced LSP metrics can provide meaningful insights into crop seasonal patterns in a changing environment that demands adaptive agricultural production.


2021 ◽  
Vol 50 (4) ◽  
pp. 722-735
Author(s):  
W. Wang ◽  
F. Berholm ◽  
K. Hu ◽  
L. Zhao ◽  
S. Feng ◽  
...  

To accurately detect lane lines in road traffic images at raining weather, a edge detection based method is studied, which mainly includes four algorithms. (1) Firstly an image is enhanced by an improved Retinex algorithm; (2) Then, an algorithm based on the Hessian matrix is applied to strengthen lane lines; (3) To extract the feature points of a lane line, a ridge edge detection algorithm based on five line detection in four directions is proposed, in which, in light on the possible positions of lane lines in the image, it detects the maximum gray level points in the local area of the detecting point within the pre-set valid detection region; and (4) After the noise removal based on the minimum circumscribed rectangles, the candidate points of lane lines are connected as segments, and for the gap filling between segments, in order to make connection correctly, the algorithm makes the filling in two steps, short gap and long gap fillings, and the long gap filling is made on the combination of segment angle difference and gap distance and gap angle. By testing hundreds of images of the lane lines at raining weather and by comparing several traditional image enhancement and segmentation algorithms, the new method of the lane line detection can produce the satisfactory results.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hua Jiang ◽  
Longfei Chang ◽  
Jingling Zhang ◽  
Pinglin Jiang

Excavation gap filling is an important means to control the strata movement in tunneling. In practice, synchronous grouting or secondary replenishment of the gap is usually used to control the settlement, instead of filling the excavation clearance. In fact, the diameter of the cutterhead is usually slightly larger than that of the shield, and the front shield is also larger than its back. As a result, there will be an annular gap (i.e., an excavation clearance) between the tunnel soil layer and the shield. Thus, effectively filling the gap contributes to controlling the formation displacement. In this paper, the Wei Lai Da Dao to Feng Tai Nan Lu section of Zhengzhou Metro Line 3 is selected as the study object. Based on the three-dimensional finite element method, the influence of an under-crossing shield tunnel sewage pipes on strata movement under complicated conditions is analyzed. Field tests also show that the movement and development trend are similar to the simulated results, which further indicates that, under similar geological conditions, numerical simulation results can be used to guide the filling of excavation clearance in EPB. It is found that the excavation gap filling can effectively reduce the surface settlement rate and make the surface settlement stabilize faster and the curve shape of “settlement trough” changes from “narrow and deep” to “shallow and wide.” However, the grout used in this method should be with the properties of short hardening time, large elastic modulus, and low shear strength. Besides, the excavation gap filling can also reduce the extrusion deformation of sewage pipe and inhibit the horizontal and vertical displacement of sewage pipes. Therefore, it is considered that excavation clearance filling is an effective method to reduce stratum movement and tunnel deformation, which is of great significance for future research and practical engineering.


Author(s):  
Camila Bermond Ruezzene ◽  
Renato Billia de Miranda ◽  
Talyson de Melo Bolleli ◽  
Frederico Fábio Mauad

The study of the hydric regime of rainfall helps in management analysis and decision-making in hydrographic basins, but a fundamental condition is the need for continuous time series of data. Therefore, this study compared gap filling methods in precipitation data and validated them using robust statistical techniques. Precipitation data from the municipality of Itirapina, which has four monitoring stations, were used. Four gap filling techniques were used, namely: normal ratio method, inverse distance weighting, multiple regression and artificial neural networks, in the period from 1979 to 1989. For validation and performance evaluation, the coefficient of determination (R²), mean absolute error (MAE), mean squared error (RMSE), Nash-Sutcliffe coefficient (Nash), agreement index (D), confidence index were used (C) and through non-parametric techniques with Mann-Witney and Kruskal-Wallis test. Excellent performances of real data were verified in comparison with estimated data, with values above 0.8 of the coefficient of determination (R²) and of Nash. Kruskal-Wallis and Mann-Whitney tests were not significant in Stations C1 and C2, demonstrating that there is a difference between real and estimated data and between the proposed methods. It was concluded that the multiple regression and neural network methods showed the best performance. From this study, efficient tools were found to fill the gap, thus promoting better management and operation of water resources. Keywords: artificial neural networks, inverse distance weighting, multiple regression, normal ratio method.


2021 ◽  
Author(s):  
Jiantao Wang ◽  
Shaopeng Chen ◽  
Xiaobo Guo ◽  
Biqiu Liu ◽  
Cong Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document