fault activity
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 50)

H-INDEX

21
(FIVE YEARS 0)

2021 ◽  

Glacially triggered faulting describes movement of pre-existing faults caused by a combination of tectonic and glacially induced isostatic stresses. The most impressive fault-scarps are found in northern Europe, assumed to be reactivated at the end of the deglaciation. This view has been challenged as new faults have been discovered globally with advanced techniques such as LiDAR, and fault activity dating has shown several phases of reactivation thousands of years after deglaciation ended. This book summarizes the current state-of-the-art research in glacially triggered faulting, discussing the theoretical aspects that explain the presence of glacially induced structures and reviews the geological, geophysical, geodetic and geomorphological investigation methods. Written by a team of international experts, it provides the first global overview of confirmed and proposed glacially induced faults, and provides an outline for modelling these stresses and features. It is a go-to reference for geoscientists and engineers interested in ice sheet-solid Earth interaction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesco Iezzi ◽  
Gerald Roberts ◽  
Joanna Faure Walker ◽  
Ioannis Papanikolaou ◽  
Athanassios Ganas ◽  
...  

AbstractTo assess whether continental extension and seismic hazard are spatially-localized on single faults or spread over wide regions containing multiple active faults, we investigated temporal and spatial slip-rate variability over many millennia using in-situ 36Cl cosmogenic exposure dating for active normal faults near Athens, Greece. We study a ~ NNE-SSW transect, sub-parallel to the extensional strain direction, constrained by two permanent GPS stations located at each end of the transect and arranged normal to the fault strikes. We sampled 3 of the 7 seven normal faults that exist between the GPS sites for 36Cl analyses. Results from Bayesian inference of the measured 36Cl data implies that some faults slip relatively-rapidly for a few millennia accompanied by relative quiescence on faults across strike, defining out-of-phase fault activity. Assuming that the decadal strain-rate derived from GPS applies over many millennia, slip on a single fault can accommodate ~ 30–75% of the regional strain-rate for a few millennia. Our results imply that only a fraction of the total number of Holocene active faults slip over timescales of a few millennia, so continental deformation and seismic hazard are localized on specific faults and over a length-scale shorter than the spacing of the present GPS network over this time-scale. Thus, (1) the identification of clustered fault activity is vital for probabilistic seismic hazard assessments, and (2) a combination of dense geodetic observations and palaeoseismology is needed to identify the precise location and width of actively deforming zones over specific time periods.


2021 ◽  
Vol 64 (4) ◽  
pp. SE435
Author(s):  
Laura Leonilde Alfonsi ◽  
Francesca Romana Cinti

he focus of this study is the analysis of a cave in Central Italy, the Beatrice Cenci cave, in order to point out and constrain evidence of possible past earthquakes and of fault activity in the area. We performed a survey of seismic related damages within the cave. This included the analysis of broken/collapsed speleothems, the recognition of structural collapse, of tilting/growth alteration in the speleothems, and the mapping of fractures, joints and/or faults. To timely set the occurrence of the recognized damage, organic sediments were dated with 14C radiocarbon method. The results merged toward the recognition of two distinct seismic shaking events affecting the cave environment, one older than 30 kyr and another around 7 kyr. The deformation observed within the cave led us to the hypothesis that the events of damage were possibly linked to the activity of the regional tectonic lineament that crosses the cave, i.e., the Liri normal fault. The morphology and the evolution of the cave appear controlled by the fault zone. These speleoseismological results provided a new contribution on the knowledge of the past activity of the Liri fault and on the earthquake history of this sector of Central Apennines.


2021 ◽  
Author(s):  
Atsushi Urabe ◽  
Yoshihiro Kase ◽  
Gentaro Kawakami ◽  
Kenji Nishina ◽  
Yasuhiro Takashimizu ◽  
...  

Abstract The eastern margin of the Japan Sea is located along an active convergent boundary between the North American and Eurasian tectonic plates. Okushiri Island, which is situated off the southwest coast of Hokkaido, is located in an active tectonic zone where many active submarine faults are distributed. Studying the records of past tsunamis on Okushiri Island is important for reconstructing the history and frequency of fault activity in this region, as well as the history of tsunamis in the northern part of the eastern margin of the Japan Sea. Five tsunami deposit horizons have been identified previously on Okushiri Island, including that of the 1741 tsunami, which are interbedded in the coastal lowlands and Holocene terraces. However, these known tsunami deposits date back only ~3,000 years. A much longer record of tsunami occurrence is required to consider the frequency of submarine fault activity. In this study, we cored from 7 to 25 m depth in the Wasabiyachi lowland on the southern part of Okushiri Island, where previous studies have confirmed the presence of multiple tsunami deposits on peat layer surfaces. The results indicate that the Wasabiyachi lowland comprises an area that was obstructed by coastal barriers between the lowland and the coast at ~8.5 ka and consists of muddy sediment and peat layers formed in lagoons and floodplains, respectively. In addition, event deposits and 15 tsunami horizons were observed among the turbidites and peat layers, dating back as far as 3,000 years. Combined with previous findings, Okushiri Island has sustained 20 tsunami events between ~7.5 ka and the present. These findings are critical for investigating the activities of submarine faults off the southwestern coast of Hokkaido, as well as for determining tsunami risks along the coast of the Japan Sea between North Tohoku and Hokkaido.


Sign in / Sign up

Export Citation Format

Share Document