rust layer
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 39)

H-INDEX

20
(FIVE YEARS 3)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 629
Author(s):  
Ning Li ◽  
Weifang Zhang ◽  
Hai Xu ◽  
Yikun Cai ◽  
Xiaojun Yan

In this work, the corrosion behavior and mechanical properties of 30CrMnSiA high-strength steel under a harsh marine atmosphere environment were systematically studied using accelerated test technology, along with corrosion kinetic analysis, microstructure and phase composition analysis, electrochemical measurements, and mechanical property tests. The influence of corrosion time on corrosion kinetics was characterized by the weight loss method. The corrosion layer and its product evolution were analyzed by SEM, EDS, XRD, and XPS. The corrosion behavior of steel was studied by a potentiodynamic polarization curve and EIS. Finally, the influence of corrosion on mechanical properties was studied by tensile and fatigue tests. The results show that 30CrMnSiA high strength steel has good corrosion resistance in a harsh marine atmosphere environment. Its corrosion behavior is cyclical: the outer rust layer exfoliated, the inner rust layer became the outer rust layer, and the matrix became inner rust due to the attack by the corrosive medium. The rust layer had a great protective effect on the matrix. The mechanical properties of 30CrMnSiA high-strength steel were reduced under the corrosive environment, and corrosion had a significant effect on its fatigue resistance.


Author(s):  
Xinyong Yan ◽  
Ling Yan ◽  
Shumei Kang ◽  
Xiangyu Qi ◽  
Meiling Xu ◽  
...  

Abstract The corrosion behavior of a high manganese steel in simulated marine splash zone environment was studied by dry-wet cyclic corrosion experiment and electrochemical experiment. Corrosion kinetics, composition, surface morphology, cross-section morphology, element distribution, valence state, polarization curve and electrochemical impedance spectroscopy were analyzed with the aim of characterizing the characteristics of corrosion product films. The results show that in chloride-containing environment, in the initial corrosion products, Mn oxides with porous structure lead to higher corrosion rate. As corrosion extends, the formation of alloy element oxides in corrosion products changes the corrosion properties of rust layers at different stages. Mo oxides form a stable passivation film, which reduces the influence of chloride ion on corrosion. Ni oxides in the inner rust layer facilitate the transformation of goethite, and Cr oxides in the outer rust layer increase the densification of the rust layer. The stability and compactness of Fe3O4, α-FeOOH and FeCr2O4 in the later corrosion products inhibit the corrosion action of manganese iron oxides and slow down the corrosion rate. With the corrosion durations, the corrosion current density of the sample with the corrosion product film first increases and then decreases, and the corrosion potential first moves negative and then shifts in a positive direction subsequently, indicating that the protective effect of the corrosion product film is gradually significant.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1412
Author(s):  
Wenbo Li ◽  
Yue Jiang ◽  
Dingguo Liu ◽  
Jiran Zhu ◽  
Yi Xie ◽  
...  

We aimed to improve the corrosion resistance of transmission network cabinet equipment in high temperature and humidity environment. In this paper, using acid modified acrylic acid as the main component, the composite conversion agent was obtained by adding phosphoric acid phytic acid and other components. Through the surface morphology, electrochemical test and adhesion force test of rust conversion coating, the versatility and corrosion resistance of rust conversion coating on the substrates were analyzed. Combined with zinc phosphate primer, the effect of rust conversion agent on the adhesion and salt spray corrosion resistance of the commercial primers was studied. The composite conversion agent has good effect on atmospheric corrosion rust layer. The corrosion resistance and adhesion force of the atmospheric corrosion rust layer treated with rust conversion agent were significantly increased. The adhesion of zinc phosphate primer on atmospheric corrosion rust coating with rust conversion was three times higher than that of atmospheric corrosion rust coating without rust conversion, respectively. Composite rust conversion agent has broad versatility, which can be used for rust conversion of atmospheric corrosion rust layer. At the same time, it has a good corrosion resistance, that can obviously improve the corrosion potential of the corroded surface and reduce the corrosion current density. In addition, the composite rust conversion agent can significantly improve the adhesion and corrosion resistance of the primer coating.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5652
Author(s):  
Xinyong Yan ◽  
Shumei Kang ◽  
Meiling Xu ◽  
Pengyu Li

The corrosion behavior of a medium-Mn steel in a simulated marine splash zone was studied by a dry–wet cyclic corrosion experiment and electrochemical experiment. The corrosion products were characterized by corrosion rate calculation, composition detection, morphology observation, element distribution detection, valence analysis, polarization curve, and electrochemical impedance test. The results show that the corrosion products of the sample mainly include γ-FeOOH, FexOy, MnxOy, and a small amount of (Fe,Mn)xOy, and the valence state of iron compounds and manganese compounds in different corrosion stages changed obviously. In the initial corrosion products, Mn is enriched significantly and facilitates the electrochemical reaction of corrosion process. The content of Ni in the inner rust layer is high. The semi-quantitative analysis of the corrosion product elements shows that the atomic concentrations of Cr and Mo increase significantly in later corrosion products, indicating that the dense isolation layer formed by alloy element compounds in the corroded layer is the main factor to improve the protection ability of the rust layer at the end corrosion stage of the sample. With the corrosion durations, the corrosion current density of the sample with the corrosion product film first increases and then decreases, and the corrosion potential first moves negative and then shifts in a positive direction subsequently, indicating that the protective effect of the corrosion product film is gradually significant.


2021 ◽  
Vol 11 (18) ◽  
pp. 8668
Author(s):  
Jinbo Li ◽  
Ziying Zhu ◽  
Hongwei Chen ◽  
Shaojie Li ◽  
Hongyan Wu ◽  
...  

Corrosion behavior of 60Si2Mn-A and 60Si2Mn-B in simulated industrial atmospheric environment was investigated by alternate immersion corrosion test and electrochemical method. The phase, morphology, characteristics of corrosion products, and the distribution of Cr, Cu, and Ni in the corrosion products of experimental steel were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalyzer (EPMA). The results show that the phase of rust layer is Fe3O4 and γ-FeOOH in the early stage and then changes to α-FeOOH and γ-FeOOH in the later stage; the size of the rust layer with corrosion resistance of 60Si2Mn is less than 60Si2Mn; the Cr element accumulates in the rust layer of the experimental steel in the early stage of corrosion resistance; and Cu, Ni, and Cr in the corrosion resistance 60Si2Mn are concentrated in the rust layer near the substrate In the later stage of corrosion. As the corrosion cycle is prolonged, the corrosion potential and the resistance of the rust layer of the experimental steel increases, and the corrosion current decreases; in the same corrosion cycle, the corrosion potential and corrosion resistance of 60Si2Mn-B are greater than 60Si2Mn, and the corrosion current is less than 60Si2Mn.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1127
Author(s):  
Lijie Zhang ◽  
Bing He ◽  
Shengnan Wang ◽  
Guangcun Wang ◽  
Xiaoming Yuan

This study shows that the hard-to-remove rust layer on the guide sleeve surface of a used cylinder can be removed using a specially developed, environmentally friendly formula for cleaning rust. Furthermore, we studied the rust removal technology that is based on ultrasonic cavitation and chemical etching. The surface morphology and structural components of the rust layer were observed using an electron microscope and an X-ray powder diffractometer. These tools were used to explore the mechanism of combined rust removal. Using response surface methodology (RSM) and central composite design (CCD), with the rust removal rate as our index of evaluation, data were analyzed to establish a response surface model that can determine the effect of cleaning temperature and ultrasonic power interaction on the rate of rust removal. Results showed that the main components of the rust layer on a 45 steel guide sleeve were α-FeOOH, γ-FeOOH, and Fe3O4. The rust was unevenly distributed with a loose structure, which was easily corroded by chemical reagents and peeled off under ultrasonic cavitation. With the increase in the cleaning temperature, the chemical reaction effect was intensified, and the cleaning ability was enhanced. With the increase in ultrasonic power, the cavitation effect was aggravated, the ultrasonic agitation was enhanced, and the rust removal rate was improved. According to response surface analysis and the application scope of the rust remover, we determined that the optimal cleaning temperature is 55 °C, and that the optimal ultrasonic power is 2880 W. The descaling rate under these parameters is 0.15 g·min−1·m−2.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1462
Author(s):  
Na Li ◽  
Ling Yan ◽  
Shaodong Wang ◽  
Changshun Wang ◽  
Hongmei Zhang ◽  
...  

Using a period immersion wet/dry cyclic corrosion test, in-situ copper-coated steels prepared by corroding copper-bearing steels were investigated in this study. The steel with a higher copper content (>3%) has a higher initial corrosion rate due to its obvious two-phase microstructure. The corrosion rates of all copper bearing steels tend to be stable after a certain time of corrosion. A copper-rich layer is formed between the matrix and the rust layer, which is due to the diffusion of copper from the rust layer to the metal surface. The copper’s stability under this corrosion condition led to the formation of a thin copper-rich film, which was uncovered after removing the rust by choosing appropriate descaling reagents. The copper coating was generated from the matrix itself during the corrosion process at 25 °C, which provided a new approach for producing in-situ composite materials without any bonding defect. It is found that the corrosion rate, corrosion time, and copper content in steel all affect the formation of copper-rich layer. In addition to the noble copper surface, the electrochemical corrosion test results show that the corrosion resistance of copper-coated steel has been significantly improved.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1091
Author(s):  
Yang Chen ◽  
Shiyu Li ◽  
Zhiyong Liu ◽  
Zixiao Wang

Four kinds of alcohol amines were tested to improve the anticorrosion performance of the phosphoric and tannic acid (PTA)-based rust converter. The alcohol amine modified PTA rust converters with the optimum mechanical and functional performances were used to prepare the homogeneous single-component waterborne rust conversion-based paint. The mechanical properties and the long-term corrosion resistance of the synthesized rust converter-based paint were investigated. The results show that alcohol amine modified PTA rust converter can convert the rust layer into a thick passivation film with iron tannate and iron phosphate as the main components, significantly improving the corrosion resistance of the carbon steel. The alcohol amine D modified PTA rust converter (RC-D) showed the best anticorrosion and rust conversion performances. The waterborne rust conversion-based paint can convert the rust layer of steel into a blue-black and relatively flat passivation film layer. The waterborne polymer-based paint containing 10 wt.% RC-D significantly improves the long-term corrosion resistance of the rusty steel and the mechanical property of paint.


Sign in / Sign up

Export Citation Format

Share Document