channel conductance
Recently Published Documents


TOTAL DOCUMENTS

408
(FIVE YEARS 36)

H-INDEX

52
(FIVE YEARS 3)

2022 ◽  
Vol 14 ◽  
Author(s):  
Tao Su ◽  
Meng-Long Chen ◽  
Li-Hong Liu ◽  
Hen Meng ◽  
Bin Tang ◽  
...  

Objective: An overwhelming majority of the genetic variants associated with genetic disorders are missense. The association between the nature of substitution and the functional alteration, which is critical in determining the pathogenicity of variants, remains largely unknown. With a novel missense variant (E1623A) identified from two epileptic cases, which occurs in the extracellular S3-S4 loop of Nav1.1, we studied functional changes of all latent mutations at residue E1623, aiming to understand the relationship between substitution nature and functional alteration.Methods: Six latent mutants with amino acid substitutions at E1623 were generated, followed by measurements of their electrophysiological alterations. Different computational analyses were used to parameterize the residue alterations.Results: Structural modeling indicated that the E1623 was located in the peripheral region far from the central pore, and contributed to the tight turn of the S3-S4 loop. The E1623 residue exhibited low functional tolerance to the substitutions with the most remarkable loss-of-function found in E1623A, including reduced current density, less steady-state availability of activation and inactivation, and slower recovery from fast inactivation. Correlation analysis between electrophysiological parameters and the parameterized physicochemical properties of different residues suggested that hydrophilicity of side-chain at E1623 might be a crucial contributor for voltage-dependent kinetics. However, none of the established algorithms on the physicochemical variations of residues could well predict changes in the channel conductance property indicated by peak current density.Significance: The results established the important role of the extracellular S3-S4 loop in Nav1.1 channel gating and proposed a possible effect of local conformational loop flexibility on channel conductance and kinetics. Site-specific knowledge of protein will be a fundamental task for future bioinformatics.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 954
Author(s):  
Sungsik Lee

In this paper, we present an empirical modeling procedure to capture gate bias dependency of amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) while considering contact resistance and disorder effects at room temperature. From the measured transfer characteristics of a pair of TFTs where the channel layer is an amorphous In-Ga-Zn-O (IGZO) AOS, the gate voltage-dependent contact resistance is retrieved with a respective expression derived from the current–voltage relation, which follows a power law as a function of a gate voltage. This additionally allows the accurate extraction of intrinsic channel conductance, in which a disorder effect in the IGZO channel layer is embedded. From the intrinsic channel conductance, the characteristic energy of the band tail states, which represents the degree of channel disorder, can be deduced using the proposed modeling. Finally, the obtained results are also useful for development of an accurate compact TFT model, for which a gate bias-dependent contact resistance and disorder effects are essential.


2021 ◽  
Vol 22 (23) ◽  
pp. 12621
Author(s):  
Agnieszka Siemieniuk ◽  
Zbigniew Burdach ◽  
Waldemar Karcz

Little is known about the effect of lead on the activity of the vacuolar K+ channels. Here, the patch-clamp technique was used to compare the impact of lead (PbCl2) on the slow-activating (SV) and fast-activating (FV) vacuolar channels. It was revealed that, under symmetrical 100-mM K+, the macroscopic currents of the SV channels exhibited a typical slow activation and a strong outward rectification of the steady-state currents, while the macroscopic currents of the FV channels displayed instantaneous currents, which, at the positive potentials, were about three-fold greater compared to the one at the negative potentials. When PbCl2 was added to the bath solution at a final concentration of 100 µM, it decreased the macroscopic outward currents of both channels but did not change the inward currents. The single-channel recordings demonstrated that cytosolic lead causes this macroscopic effect by a decrease of the single-channel conductance and decreases the channel open probability. We propose that cytosolic lead reduces the current flowing through the SV and FV channels, which causes a decrease of the K+ fluxes from the cytosol to the vacuole. This finding may, at least in part, explain the mechanism by which cytosolic Pb2+ reduces the growth of plant cells.


2021 ◽  
Author(s):  
Julia Bruggisser ◽  
Ioan Iacovache ◽  
Samuel C Musson ◽  
Matteo T Degiacomi ◽  
Horst Posthaus ◽  
...  

We describe the cryo-EM structure of Clostridium perfringens β-toxin (CBP) in styrene maleic acid (SMA) discs, which represents the membrane-inserted pore form, at near atomic resolution. We show that CPB forms an octamer, which though having a similar conformation to the hetero-oligomeric pores of bicomponent leukocidins, features a different receptor binding region and a novel N-terminal β-barrel. The latter contains an additional selectivity filter and creates a bipolar pore. We propose that the N-terminal β-barrel domain may regulate oligomerization and solubility of the complex and influence channel conductance and monomer stability. In addition, we show that the β-barrel protrusion domain can be modified or exchanged without affecting the pore forming ability, thus making the pore particularly attractive for macromolecule sensing and nanotechnology. The cryo-EM structure of the octameric pore of CPB will facilitate future developments in both nanotechnology and basic research.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258275
Author(s):  
Linus J. Conrad ◽  
Peter Proks ◽  
Stephen J. Tucker

In addition to the classical voltage-dependent behavior mediated by the voltage-sensing-domains (VSD) of ion channels, a growing number of voltage-dependent gating behaviors are being described in channels that lack canonical VSDs. A common thread in their mechanism of action is the contribution of the permeating ion to this voltage sensing process. The polymodal K2P K+ channel, TREK2 responds to membrane voltage through a gating process mediated by the interaction of K+ with its selectivity filter. Recently, we found that this action can be modulated by small molecule agonists (e.g. BL1249) which appear to have an electrostatic influence on K+ binding within the inner cavity and produce an increase in the single-channel conductance of TREK-2 channels. Here, we directly probed this K+-dependent gating process by recording both macroscopic and single-channel currents of TREK-2 in the presence of high concentrations of internal K+. Surprisingly we found TREK-2 is inhibited by high internal K+ concentrations and that this is mediated by the concomitant increase in ionic-strength. However, we were still able to determine that the increase in single channel conductance in the presence of BL1249 was blunted in high ionic-strength, whilst its activatory effect (on channel open probability) persisted. These effects are consistent with an electrostatic mechanism of action of negatively charged activators such as BL1249 on permeation, but also suggest that their influence on channel gating is complex.


2021 ◽  
Vol 11 (9) ◽  
pp. 853
Author(s):  
Russell A. Wilke

Syndrome of inappropriate antidiuretic hormone (SIADH) is a common cause of hyponatremia, and many cases represent adverse reactions to drugs that alter ion channel conductance within the peptidergic nerve terminals of the posterior pituitary. The frequency of drug-induced SIADH increases with age; as many as 20% of patients residing in nursing homes have serum sodium levels below 135 mEq/L. Mild hyponatremia is associated with cognitive changes, gait instability, and falls. Severe hyponatremia is associated with cerebral edema, seizures, permanent disability, and/or death. Although pharmacogenetic tests are now being deployed for some drugs capable of causing SIADH (e.g., antidepressants, antipsychotics, and opioid analgesics), the implementation of these tests has been based upon the prior known association of these drugs with other serious adverse drug reactions (e.g., electrocardiographic abnormalities). Work is needed in large observational cohorts to quantify the strength of association between pharmacogene variants and drug-induced SIADH so that decision support can be developed to identify patients at high risk.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ali Ikhsanul Qauli ◽  
Aroli Marcellinus ◽  
Ki Moo Lim

It is well known that cardiac electromechanical delay (EMD) can cause dyssynchronous heart failure (DHF), a prominent cardiovascular disease (CVD). This work computationally assesses the conductance variation of every ion channel on the cardiac cell to give rise to EMD prolongation. The electrical and mechanical models of human ventricular tissue were simulated, using a population approach with four conductance reductions for each ion channel. Then, EMD was calculated by determining the difference between the onset of action potential and the start of cell shortening. Finally, EMD data were put into the optimized conductance dimensional stacking to show which ion channel has the most influence in elongating the EMD. We found that major ion channels, such as L-type calcium (CaL), slow-delayed rectifier potassium (Ks), rapid-delayed rectifier potassium (Kr), and inward rectifier potassium (K1), can significantly extend the action potential duration (APD) up to 580 ms. Additionally, the maximum intracellular calcium (Cai) concentration is greatly affected by the reduction in channel CaL, Ks, background calcium, and Kr. However, among the aforementioned major ion channels, only the CaL channel can play a superior role in prolonging the EMD up to 83 ms. Furthermore, ventricular cells with long EMD have been shown to inherit insignificant mechanical response (in terms of how strong the tension can grow and how far length shortening can go) compared with that in normal cells. In conclusion, despite all variations in every ion channel conductance, only the CaL channel can play a significant role in extending EMD. In addition, cardiac cells with long EMD tend to have inferior mechanical responses due to a lack of Cai compared with normal conditions, which are highly likely to result in a compromised pump function of the heart.


2021 ◽  
Vol 153 (10) ◽  
Author(s):  
Maryline Beurg ◽  
Jong-Hoon Nam ◽  
Robert Fettiplace

Although mechanoelectrical transducer (MET) channels have been extensively studied, uncertainty persists about their molecular architecture and single-channel conductance. We made electrical measurements from mouse cochlear outer hair cells (OHCs) to reexamine the MET channel conductance comparing two different methods. Analysis of fluctuations in the macroscopic currents showed that the channel conductance in apical OHCs determined from nonstationary noise analysis was about half that of single-channel events recorded after tip link destruction. We hypothesized that this difference reflects a bandwidth limitation in the noise analysis, which we tested by simulations of stochastic fluctuations in modeled channels. Modeling indicated that the unitary conductance depended on the relative values of the channel activation time constant and the applied low-pass filter frequency. The modeling enabled the activation time constant of the channel to be estimated for the first time, yielding a value of only a few microseconds. We found that the channel conductance, assayed with both noise and recording of single-channel events, was reduced by a third in a new deafness mutant, Tmc1 p.D528N. Our results indicate that noise analysis is likely to underestimate MET channel amplitude, which is better characterized from recordings of single-channel events.


Sign in / Sign up

Export Citation Format

Share Document