proxy data
Recently Published Documents


TOTAL DOCUMENTS

449
(FIVE YEARS 151)

H-INDEX

41
(FIVE YEARS 6)

2021 ◽  
Vol 47 (3) ◽  
pp. 77-78
Author(s):  
Khoiril Anwar Maryunani

Recent global warming has been addressed due to human activity that causes increased greenhouse gases. However, there are inherent uncertainties in the statement, one of them is the level of natural variability inherent in the climate system. Climate data from measuring instruments are not long enough to evaluate climate variability and current climate evolution. Therefore, we need climate data that has a long back span. To get adequate past climate data, we need natural phenomena which are climate dependent. This natural phenomenon provides a proxy record of the climate. This study of proxy data is the foundation of palaeoclimatology and paleoceanography. Microfossils (i.e., foraminifera, palynomorphs, nannofossils) which in geology are used as a standard tool in biostratigraphy for both age determination and paleoenvironment and correlation, can also be used as a proxy for obtaining paleoclimate and paleoceanography data. Using microfossil as a proxy to study past climate and paleoceanography, we need an understanding of the type of proxy data available and methods used in their analysis.In addition to the dating method (biostratigraphy), there are many climate and oceanography parameters that can be obtained from microfossil proxies such as: sea surface temperature (SST), sea surface salinity, (SST) climate (warm, cold, dry, wet), precipitation, productivity, oxygen content and organic carbon level, deep sea current and ventilation/upwelling, thermocline and mixed layer, variability deep water properties, CCD, bathymetry, sea level change and dissolution. The methods to obtain data fall into some categories e.g., faunal/floral displacement, morphology changes, transfer function/modern analog and isotopic content. Another method that can be used is observing microfossil assemblages and link them to ecological changes associated with climate change and its paleoceanography.A paleoclimate and paleoceanography study using microfossil proxies has been conducted in the Cendrawasih bay, Papua, Indonesia. The study shows that climate in the tropical west Pacific margin (Cendrawasih bay) during Late Pleistocene to Holocene shows high variability. There are nineteen climate changes occurred during Holocene. Early Holocene dated as ca. 11,800-year BP marked by rapid warming with SST differences to last glacial is about 4oC. Early to Middle Holocene (ca. 5960-year BP) marked by increasing temperature up to 2oC, interrupted by cooling at ca. 11230-, 8310- and 7120-years BP. At Middle Holocene temperature decreased rapidly and reached its peak at around ca. 3150-year BP. After cooling at ca. 3150-year BP, temperature increased and then decreased with its peak at ca. 1710-year BP. Since ca. 1710-year BP to Recent, temperature shows warming trend. SST from MAT indicates warming environment near to 1.5oC. The warming trend was interrupted by rapid cooling and warming at ca. 300-year BP. This last warming trend indicates that global warming had started before industrial era and rapid cooling, or warming can occur without anthropogenic gases influence. The typical Holocene climate of warm-wet, dry-cold reverse and become warm-dry, cold-wet during ca. 790-370-year BP and then reversed back to preceding state.Semi-restricted basin occurred since last glacial with anaerobic condition and estuarine circulation system. Warming during interstadial 1e-1a, causing reverse water circulation and basin become sub-aerobic with anti-estuarine circulation. A lot of terrestrial organic matter flow to the bay and increase acidity and carbonate dissolution. High sedimentation found occurred during glacial period especially at the end of glacial period. Rapid warming during late glacial to middle Holocene, rising relative sea level and the bay become more open marine with well oxygenated bottom water and high marine productivity. Warm temperature and deeper thermocline depth (~ 250 m) in west Pacific occurred up to ca. 5960-year BP. Decreasing Sea surface temperature at ca. 5960-year BP and drop of relative sea level causing sub-aerobic condition inside bay. The semi-restricted state with sub-aerobic condition occurred up to Recent.Distribution of Sphaeroidinella group in the tropical west Pacific shows strong correlation with thermocline depth and reflect El Niño frequency event. Early middle Holocene dominated by La Niña-like condition and since Middle Holocene (ca. 5960-year BP) frequent El Niño event began to occur. 


MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 653-658
Author(s):  
NELOY KHARE

Solar activities are directly or indirectly responsible for climate variability around the globe. Evidences of such correspondences between solar activities and palaeoclimatic proxy data have been reported from polar as well as tropical regions, suggesting solar influence over climate dynamics. However, these findings need to be further strengthened by covering vast geographical region for generating palaeoclimatic data and corresponding variations in solar activities. A better time control on proxy data is essential to arrive at conclusive understanding and plausible causal linkages between solar activity and climate changes from poles to tropics.


2021 ◽  
Vol 5 (2) ◽  
pp. 85-100
Author(s):  
Arun Magar

An attempt made to reconstruct the monsoon variability using sedimentological, geochemical and mineral magnetic studies from deposits in Vaghad Tank, Nashik district, Maharashtra (India). The ~140 years multi-proxy data of the 3.3 meter thick sedimentary section of the tank exhibits some minor changes in sediment characteristics up to the depth of ~150 cm. The grain-size analysis and mineral magnetic studies of 67 samples of sediment suggests that, the sediment dominated by clay. Overall, sedimentary profile does not exhibit any systematic trend in the sediment properties. Finally, the present study concludes no significant changes in the past monsoon conditions have been occurred during the last century but some minor changes in the hydrodynamic conditions have been noticed during the last few decades.


Author(s):  
Linda C. Ivany ◽  
Emily J. Judd

Ongoing global warming due to anthropogenic climate change has long been recognized, yet uncertainties regarding how seasonal extremes will change in the future persist. Paleoseasonal proxy data from intervals when global climate differed from today can help constrain how and why the annual temperature cycle has varied through space and time. Records of past seasonal variation in marine temperatures are available in the oxygen isotope values of serially sampled accretionary organisms. The most useful data sets come from carefully designed and computationally robust studies that enable characterization of paleoseasonal parameters and seamless integration with mean annual temperature data sets and climate models. Seasonal data sharpen interpretations of—and quantify overlooked or unconstrained seasonal biases in—the more voluminous mean temperature data and aid in the evaluation of climate model performance. Methodologies to rigorously analyze seasonal data are now available, and the promise of paleoseasonal proxy data for the next generation of paleoclimate research is significant. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Michael Dietze ◽  
Sebastian Kreutzer ◽  
Margret C. Fuchs ◽  
Sascha Meszner

Abstract. The majority of palaeoenvironmental information is inferred from proxy data contained in accretionary sediments, called geo-archives. The validity of proxy data and analysis workflows are usually assumed implicitly, with systematic tests and uncertainty estimates restricted to modern analogue studies or reduced-complexity case studies. However, a more generic and consistent approach to exploring the validity and variability of proxy functions would be to translate a given geo-archive into a model scenario: a "virtual twin". Here, we introduce a conceptual framework and numerical toolset that allows the definition and analysis of synthetic sediment sections. The R package sandbox describes arbitrary stratigraphically consistent deposits by depth-dependent rules and grain-specific parameters, allowing full scalability and flexibility. Virtual samples can be taken, resulting in discrete grain-mixtures with well-defined parameters. These samples can then be virtually prepared and analysed, for example to test hypotheses. We illustrate the concept of sandbox, explain how a sediment section can be mapped into the model and, by focusing on an exemplary field of application, we explore universal geochronological research questions related to the effects of sample geometry and grain-size specific age inheritance. We summarise further application scenarios of the model framework, relevant for but not restricted to the broader geochronological community.


2021 ◽  
Author(s):  
Janica C. Bühler ◽  
Josefine M. Axelsson ◽  
Franziska A. Lechleitner ◽  
Jens Fohlmeister ◽  
Allegra N. LeGrande ◽  
...  

Abstract. The incorporation of water isotopologues into the hydrology of general circulation models (GCMs) facilitates the comparison between modelled and measured proxy data in paleoclimate archives. However, the variability and drivers of measured and modelled water isotopologues, and indeed the diversity of their representation in different models are not well constrained. Improving our understanding of this variability in past and present climates will help to better constrain future climate change projections and decrease their range of uncertainty. Speleothems are a precisely datable paleoclimate archive and provide well preserved (semi-)continuous multivariate isotope time series in the lower and mid-latitudes, and are, therefore, well suited to assess climate and isotope variability on decadal and longer timescales. However, the relationship between speleothem oxygen and carbon isotopes to climate variables also depends on site-specific parameters, and their comparison to GCMs is not always straightforward. Here we compare speleothem oxygen and carbon isotopic signatures from the Speleothem Isotopes Synthesis and AnaLysis database version 2 (SISALv2) to the output of five different water-isotope-enabled GCMs (ECHAM5-wiso, GISS-E2-R, iCESM, iHadCM3, and isoGSM) over the last millennium (850–1850 common era, CE). We systematically evaluate differences and commonalities between the standardized model simulation outputs. The goal is to distinguish climatic drivers of variability for both modelled and measured isotopes. We find strong regional differences in the oxygen isotope signatures between models that can partly be attributed to differences in modelled temperatures. At low latitudes, precipitation amount is the dominant driver for water isotope variability, however, at cave locations the agreement between modelled temperature variability is higher than for precipitation variability. While modelled isotopic signatures at cave locations exhibited extreme events coinciding with changes in volcanic and solar forcing, such fingerprints are not apparent in the speleothem isotopes, and may be attributed to the lower temporal resolution of speleothem records compared to the events that are to be detected. Using spectral analysis, we can show that all models underestimate decadal and longer variability compared to speleothems, although to varying extent. We found that no model excels in all analyzed comparisons, although some perform better than the others in either mean or variability. Therefore, we advise a multi-model approach, whenever comparing proxy data to modelled data. Considering karst and cave internal processes through e.g. isotope-enabled karst models may alter the variability in speleothem isotopes and play an important role in determining the most appropriate model. By exploring new ways of analyzing the relationship between the oxygen and carbon isotopes, their variability, and co-variability across timescales, we provide methods that may serve as a baseline for future studies with different models using e.g. different isotopes, different climate archives, or time periods.


Author(s):  
Joanna Mirosław-Grabowska ◽  
Ryszard Krzysztof Borówka ◽  
Magdalena Radzikowska ◽  
Joanna Sławińska ◽  
Anna Hrynowiecka ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thea H. Heimdal ◽  
Yves Goddéris ◽  
Morgan T. Jones ◽  
Henrik H. Svensen

AbstractThe emplacement of the Karoo Large Igneous Province (LIP) occurred synchronously with the Toarcian crisis (ca. 183 Ma), which is characterized by major carbon cycle perturbations. A marked increase in the atmospheric concentration of CO2 (pCO2) attests to significant input of carbon, while negative carbon isotope excursions (CIEs) in marine and terrestrial records suggest the involvement of a 12C-enriched source. Here we explore the effects of pulsed carbon release from the Karoo LIP on atmospheric pCO2 and δ13C of marine sediments, using the GEOCLIM carbon cycle model. We show that a total of 20,500 Gt C replicates the Toarcian pCO2 and δ13C proxy data, and that thermogenic carbon (δ13C of −36 ‰) represents a plausible source for the observed negative CIEs. Importantly, an extremely isotopically depleted carbon source, such as methane clathrates, is not required in order to replicate the negative CIEs. Although exact values of individual degassing pulses represent estimates, we consider our emission scenario realistic as it incorporates the available geological knowledge of the Karoo LIP and a representative framework for Earth system processes during the Toarcian.


Sign in / Sign up

Export Citation Format

Share Document