local correlation
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 77)

H-INDEX

43
(FIVE YEARS 5)

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Silpa Muralidharan ◽  
Ryutaro Ohira ◽  
Shota Kume ◽  
Kenji Toyoda

2021 ◽  
Vol 9 ◽  
Author(s):  
Ting Xiao ◽  
Lanbing Yu ◽  
Weiming Tian ◽  
Chang Zhou ◽  
Luqi Wang

A landslide susceptibility map (LSM) is the basis of hazard and risk assessment, guiding land planning and utilization, early warning of disaster, etc. Researchers are often overly keen on hybridizing state-of-the-art models or exploring new mathematical susceptibility models to improve the accuracy of the susceptibility map in terms of a receiver operator characteristic curve. Correlation analysis of the causal factors is a necessary routine process before susceptibility modeling to ensure that the overall correlation among all factors is low. However, this overall correlation analysis is insufficient to detect a high local correlation among the causal factor classes. The objective of this study is to answer three questions: 1) Is there a high correlation between causal factors in some parts locally? 2) Does it affect the accuracy of landslide susceptibility assessment? and 3) How can this influence be eliminated? To this aim, Wanzhou County was taken as the test site, where landslide susceptibility assessment based on 12 causal factors has been previously performed using the frequency ratio (FR) model and random forest (RF) model. In this work, we conducted a local spatial correlation analysis of the “altitude” and “rivers” factors and found a sizeable spatial overlap between altitude-class-1 and rivers-class-1. The “altitude” and “rivers” factors were reclassified, and then the FR model and RF model were used to reevaluate the susceptibility and analyze the accuracy loss caused by the local spatial correlation of the two factors. The results demonstrated that the accuracy of LSMs was markedly enhanced after reclassification of “altitude” and “rivers,” especially for the RF model–based LSM. This research shed new light on the local correlation of causal factors arising from a particular geomorphology and their impact on susceptibility.


AIAA Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Zaijie Liu ◽  
Yuhan Lu ◽  
Jinping Li ◽  
Chao Yan

Author(s):  
Jaime D. Mondragón ◽  
Ramesh Marapin ◽  
Peter Paul De Deyn ◽  
Natasha Maurits ◽  

<b><i>Introduction:</i></b> Progression of amnestic mild cognitive impairment (aMCI) to Alzheimer’s disease (AD) is a clinical event with highly variable progression rates varying from 10–15% up to 30–34%. Functional connectivity (FC), the temporal similarity between spatially remote neurophysiological events, has previously been reported to differ between aMCI patients who progress to AD (pMCI) and those who do not (i.e., remain stable; sMCI). However, these reports had a short-term follow-up and do not provide insight into long-term AD progression. <b><i>Methods:</i></b> Seventy-nine participants with a baseline and 78 with a 12-month, 51 with a 24-month, and 22 with a +48-month follow-up resting-state fMRI with aMCI diagnosis from the Alzheimer’s Disease Neuroimaging Initiative database were included. FC was assessed using the CONN toolbox. Local correlation and group independent component analysis were utilized to compare regional functional coupling and between-network FC, respectively, between sMCI and pMCI groups. Two-sample <i>t</i> tests were used to test for statistically significant differences between groups, and paired <i>t</i>-tests were used to assess cognitive changes over time. <b><i>Results:</i></b> All participants (i.e., 66 sMCI and 19 pMCI) had a baseline and a year follow-up fMRI scan. Progression from aMCI to AD occurred in 19 patients (10 at 12 months, 5 at 24 months, and 4 at &#x3e;48 months), while 73 MCI patients remained cognitively stable (sMCI). The pMCI and sMCI cognitive profiles were different. More between-network FC than regional functional coupling differences were present between sMCI and pMCI patients. Activation in the salience network (SN) and the default mode network (DMN) was consistently different between sMCI and pMCI patients across time. <b><i>Discussion:</i></b> sMCI and pMCI patients have different cognitive and FC profiles. Only pMCI patients showed cognitive differences across time. The DMN and SN showed local correlation and between-network FC differences between the sMCI and pMCI patient groups at multiple moments in time.


Author(s):  
Mercedes A. Bravo ◽  
Man Chong Leong ◽  
Alan E. Gelfand ◽  
Marie Lynn Miranda

We develop a local, spatial measure of educational isolation (EI) and characterize the relationship between EI and our previously developed measure of racial isolation (RI). EI measures the extent to which non-college educated individuals are exposed primarily to other non-college educated individuals. To characterize how the RI-EI relationship varies across space, we propose a novel measure of local correlation. Using birth records from the State of Michigan (2005–2012), we estimate associations between RI, EI, and birth outcomes. EI was lower in urban communities and higher in rural communities, while RI was highest in urban areas and parts of the southeastern United States (US). We observed greater heterogeneity in EI in low RI tracts, especially in non-urban tracts; residents of high RI tracts are likely to be both educationally and racially isolated. Associations were also observed between RI, EI, and gestational length (weeks) and preterm birth (PTB). For example, moving from the lowest to the highest quintile of RI was associated with a 1.11 (1.07, 1.15) and 1.16 (1.10, 1.22) increase in odds of PTB among NHB and NHW women, respectively. Moving from the lowest to the highest quintile of EI was associated with a 1.07 (1.02, 1.12) and 1.03 (1.00, 1.05) increase in odds of PTB among NHB and NHW women, respectively. This work provides three tools (RI, EI, and the local correlation measure) to researchers and policymakers interested in how residential isolation shapes disparate outcomes.


Sign in / Sign up

Export Citation Format

Share Document