gene pairs
Recently Published Documents


TOTAL DOCUMENTS

381
(FIVE YEARS 206)

H-INDEX

31
(FIVE YEARS 7)

Author(s):  
Tingna Chen ◽  
Qiuming He ◽  
Zhenxian Xiang ◽  
Rongzhang Dou ◽  
Bin Xiong

Background: Gastric cancer (GC) is aggressive cancer with a poor prognosis. Previously bulk transcriptome analysis was utilized to identify key genes correlated with the development, progression and prognosis of GC. However, due to the complexity of the genetic mutations, there is still an urgent need to recognize core genes in the regulatory network of GC.Methods: Gene expression profiles (GSE66229) were retrieved from the GEO database. Weighted correlation network analysis (WGCNA) was employed to identify gene modules mostly correlated with GC carcinogenesis. R package ‘DiffCorr’ was applied to identify differentially correlated gene pairs in tumor and normal tissues. Cytoscape was adopted to construct and visualize the gene regulatory network.Results: A total of 15 modules were detected in WGCNA analysis, among which three modules were significantly correlated with GC. Then genes in these modules were analyzed separately by “DiffCorr”. Multiple differentially correlated gene pairs were recognized and the network was visualized by the software Cytoscape. Moreover, GEMIN5 and PFDN2, which were rarely discussed in GC, were identified as key genes in the regulatory network and the differential expression was validated by real-time qPCR, WB and IHC in cell lines and GC patient tissues.Conclusions: Our research has shed light on the carcinogenesis mechanism by revealing differentially correlated gene pairs during transition from normal to tumor. We believe the application of this network-based algorithm holds great potential in inferring relationships and detecting candidate biomarkers.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Heng Xu ◽  
Ying Hu ◽  
Xinyu Zhang ◽  
Bradley E. Aouizerat ◽  
Chunhua Yan ◽  
...  

Abstract Background Gene expression is regulated by transcription factors, cofactors, and epigenetic mechanisms. Coexpressed genes indicate similar functional categories and gene networks. Detecting gene-gene coexpression is important for understanding the underlying mechanisms of cellular function and human diseases. A common practice of identifying coexpressed genes is to test the correlation of expression in a set of genes. In single-cell RNA-seq data, an important challenge is the abundance of zero values, so-called “dropout”, which results in biased estimation of gene-gene correlations for downstream analyses. In recent years, efforts have been made to recover coexpressed genes in scRNA-seq data. Here, our goal is to detect coexpressed gene pairs to reduce the “dropout” effect in scRNA-seq data using a novel graph-based k-partitioning method by merging transcriptomically similar cells. Results We observed that the number of zero values was reduced among the merged transcriptomically similar cell clusters. Motivated by this observation, we leveraged a graph-based algorithm and develop an R package, scCorr, to recover the missing gene-gene correlation in scRNA-seq data that enables the reliable acquisition of cluster-based gene-gene correlations in three independent scRNA-seq datasets. The graphically partitioned cell clusters did not change the local cell community. For example, in scRNA-seq data from peripheral blood mononuclear cells (PBMCs), the gene-gene correlation estimated by scCorr outperformed the correlation estimated by the nonclustering method. Among 85 correlated gene pairs in a set of 100 clusters, scCorr detected 71 gene pairs, while the nonclustering method detected only 4 pairs of a dataset from PBMCs. The performance of scCorr was comparable to those of three previously published methods. As an example of downstream analysis using scCorr, we show that scCorr accurately identified a known cell type (i.e., CD4+ T cells) in PBMCs with a receiver operating characteristic area under the curve of 0.96. Conclusions Our results demonstrate that scCorr is a robust and reliable graph-based method for identifying correlated gene pairs, which is fundamental to network construction, gene-gene interaction, and cellular omic analyses. scCorr can be quickly and easily implemented to minimize zero values in scRNA-seq analysis and is freely available at https://github.com/CBIIT-CGBB/scCorr.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009036
Author(s):  
Jack Kuipers ◽  
Ariane L. Moore ◽  
Katharina Jahn ◽  
Peter Schraml ◽  
Feng Wang ◽  
...  

Tumour progression is an evolutionary process in which different clones evolve over time, leading to intra-tumour heterogeneity. Interactions between clones can affect tumour evolution and hence disease progression and treatment outcome. Intra-tumoural pairs of mutations that are overrepresented in a co-occurring or clonally exclusive fashion over a cohort of patient samples may be suggestive of a synergistic effect between the different clones carrying these mutations. We therefore developed a novel statistical testing framework, called GeneAccord, to identify such gene pairs that are altered in distinct subclones of the same tumour. We analysed our framework for calibration and power. By comparing its performance to baseline methods, we demonstrate that to control type I errors, it is essential to account for the evolutionary dependencies among clones. In applying GeneAccord to the single-cell sequencing of a cohort of 123 acute myeloid leukaemia patients, we find 1 clonally co-occurring and 8 clonally exclusive gene pairs. The clonally exclusive pairs mostly involve genes of the key signalling pathways.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12490
Author(s):  
Min Wang ◽  
Zhenghai Mo ◽  
Ruozhu Lin ◽  
Cancan Zhu

SQUAMOSA promoter binding protein-like (SPL) genes are a type of plant-specific transcription factors that play crucial roles in the regulation of phase transition, floral transformation, fruit development, and various stresses. Although SPLs have been characterized in several model species, no systematic analysis has been studied in pecans, an important woody oil tree species. In this study, a total of 32 SPL genes (CiSPLs) were identified in the pecan genome. After conducting phylogenetic analysis of the conserved SBP proteins from Arabidopsis, rice, and poplar, the CiSPLs were separated into eight subgroups. The CiSPL genes within the same subgroup contained very similar exon-intron structures and conserved motifs. Nine segmentally duplicated gene pairs in the pecan genome and 16 collinear gene pairs between the CiSPL and AtSPL genes were identified. Cis-element analysis showed that CiSPL genes may regulate plant meristem differentiation and seed development, participate in various biological processes, and respond to plant hormones and environmental stresses. Therefore, we focused our study on the expression profiles of CiSPL genes during flower and fruit development. Most of the CiSPL genes were predominantly expressed in buds and/or female flowers. Additionally, quantitative real time PCR (qRT-PCR) analyses confirmed that CiSPL genes showed distinct spatiotemporal expression patterns in response to drought and salt treatments. The study provides foundation for the further exploration of the function and evolution of SPL genes in pecan.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Deming Ou ◽  
Ying Wu

Abstract Background It is a basic task in high-throughput gene expression profiling studies to identify differentially expressed genes (DEGs) between two phenotypes. RankComp, an algorithm, could analyze the highly stable within-sample relative expression orderings (REOs) of gene pairs in a particular type of human normal tissue that are widely reversed in the cancer condition, thereby detecting DEGs for individual disease samples measured by a particular platform. Methods In the present study, Gene Expression Omnibus (GEO) Series (GSE) GSE75540, GSE138206 were downloaded from GEO, by analyzing DEGs in oral squamous cell carcinoma based on online datasets using the RankComp algorithm, using the Kaplan-Meier survival analysis and Cox regression analysis to survival analysis, Gene Set Enrichment Analysis (GSEA) to explore the potential molecular mechanisms underlying. Results We identified 6 reverse gene pairs with stable REOs. All the 12 genes in these 6 reverse gene pairs have been reported to be associated with cancers. Notably, lower Interferon Induced Protein 44 Like (IFI44L) expression was associated with poorer overall survival (OS) and Disease-free survival (DFS) in oral squamous cell carcinoma patients, and IFI44L expression showed satisfactory predictive efficiency by receiver operating characteristic (ROC) curve. Moreover, low IFI44L expression was identified as risk factors for oral squamous cell carcinoma patients’ OS. IFI44L downregulation would lead to the activation of the FRS-mediated FGFR1, FGFR3, and downstream signaling pathways, and might play a role in the PI3K-FGFR cascades. Conclusions Collectively, we identified 6 reverse gene pairs with stable REOs in oral squamous cell carcinoma, which might serve as gene signatures playing a role in the diagnosis in oral squamous cell carcinoma. Moreover, high expression of IFI44L, one of the DEGs in the 6 reverse gene pairs, might be associated with favorable prognosis in oral squamous cell carcinoma patients and serve as a tumor suppressor by acting on the FRS-mediated FGFR signaling.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1848
Author(s):  
Meimei Hu ◽  
Mengdi Li ◽  
Jianbo Wang

SUV (the Suppressor of variegation [Su(var)] homologs and related) gene family is a subgroup of the SET gene family. According to the SRA domain and WIYLD domain distributions, it can be divided into two categories, namely SUVH (the Suppressor of variegation [Su(var)] homologs) and SUVR (the Suppressor of variegation [Su(var)] related). In this study, 139 SUV genes were identified in allopolyploid Brassica napus and its diploid ancestors, and their evolutionary relationships, protein properties, gene structures, motif distributions, transposable elements, cis-acting elements and gene expression patterns were analyzed. Our results showed that the SUV gene family of B. napus was amplified during allopolyploidization, in which the segmental duplication and TRD played critical roles. After the separation of Brassica and Arabidopsis lineages, orthologous gene analysis showed that many SUV genes were lost during the evolutionary process in B. rapa, B. oleracea and B. napus. The analysis of the gene and protein structures and expression patterns of 30 orthologous gene pairs which may have evolutionary relationships showed that most of them were conserved in gene structures and protein motifs, but only four gene pairs had the same expression patterns.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Boyi Pi ◽  
Jiao Pan ◽  
Mu Xiao ◽  
Xinchang Hu ◽  
Lei Zhang ◽  
...  

Abstract Background CCCH zinc finger family is one of the largest transcription factor families related to multiple biotic and abiotic stresses. Brassica napus L., an allotetraploid oilseed crop formed by natural hybridization between two diploid progenitors, Brassica rapa and Brassica oleracea. A systematic identification of rapeseed CCCH family genes is missing and their functional characterization is still in infancy. Results In this study, 155 CCCH genes, 81 from its parent B. rapa and 74 from B. oleracea, were identified and divided into 15 subfamilies in B. napus. Organization and syntenic analysis explained the distribution and collinearity relationship of CCCH genes, the selection pressure and evolution of duplication gene pairs in B. napus genome. 44 diploid duplication gene pairs and 4 triple duplication gene groups were found in B. napus of CCCH family and the segmental duplication is attributed to most CCCH gene duplication events in B. napus. Nine types of CCCH motifs exist in B. napus CCCH family members, and motif C-X7/8-C-X5-C-X3-H is the most common and a new conserved CCH motif (C-X5-C-X3-H) has been identified. In addition, abundant stress-related cis-elements exist in promoters of 27 subfamily IX (RR-TZF) genes and their expression profiles indicated that RR-TZF genes could be involved in responses to hormone and abiotic stress. Conclusions The results provided a foundation to understand the basic characterization and genes evolution of CCCH gene family in B. napus, and provided potential targets for genetic engineering in Brassicaceae crops in pursuit of stress-tolerant traits.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liwei Zheng ◽  
Shengjie Ma ◽  
Dandan Shen ◽  
Hong Fu ◽  
Yue Wang ◽  
...  

Abstract Background In plants, histone modification (HM) genes participate in various developmental and defense processes. Gramineae plants (e.g., Triticum aestivum, Hordeum vulgare, Sorghum bicolor, Setaria italica, Setaria viridis, and Zea mays) are important crop species worldwide. However, little information on HM genes is in Gramineae species. Results Here, we identified 245 TaHMs, 72 HvHMs, 84 SbHMs, 93 SvHMs, 90 SiHMs, and 90 ZmHMs in the above six Gramineae species, respectively. Detailed information on their chromosome locations, conserved domains, phylogenetic trees, synteny, promoter elements, and gene structures were determined. Among the HMs, most motifs were conserved, but several unique motifs were also identified. Our results also suggested that gene and genome duplications potentially impacted the evolution and expansion of HMs in wheat. The number of orthologous gene pairs between rice (Oryza sativa) and each Gramineae species was much greater than that between Arabidopsis and each Gramineae species, indicating that the dicotyledons shared common ancestors. Moreover, all identified HM gene pairs likely underwent purifying selection based on to their non-synonymous (Ka)/synonymous (Ks) nucleotide substitutions. Using published transcriptome data, changes in TaHM gene expression in developing wheat grains treated with brassinosteroid, brassinazole, or activated charcoal were investigated. In addition, the transcription models of ZmHMs in developing maize seeds and after gibberellin treatment were also identified. We also examined plant stress responses and found that heat, drought, salt, insect feeding, nitrogen, and cadmium stress influenced many TaHMs, and drought altered the expression of several ZmHMs. Thus, these findings indicate their important functions in plant growth and stress adaptations. Conclusions Based on a comprehensive analysis of Gramineae HMs, we found that TaHMs play potential roles in grain development, brassinosteroid- and brassinazole-mediated root growth, activated charcoal-mediated root and leaf growth, and biotic and abiotic adaptations. Furthermore, ZmHMs likely participate in seed development, gibberellin-mediated leaf growth, and drought adaptation.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2509
Author(s):  
Charlotte Appiah ◽  
Zhong-Fu Yang ◽  
Jie He ◽  
Yang Wang ◽  
Jie Zhou ◽  
...  

The heat shock protein 90 (Hsp90) is a protein produced in plants in response to stress. This study identified and analyzed Hsp90 gene family members in the perennial ryegrass genome. From the results, eight Hsp90 proteins were obtained and their MW, pI and number of amino acid bases varied. The amino acid bases ranged from 526 to 862. The CDS also ranged from 20 (LpHsp0-4) to 1 (LpHsp90-5). The least number of CDS regions was 1 (LpHsp90-5) with 528 kb amino acids, while the highest was 20 (LpHsp90-4) with 862 kb amino acids, which showed diversity among the protein sequences. The phylogenetic tree revealed that Hsp90 genes in Lolium perenne, Arabidopsis thaliana, Oryza sativa and Brachypodium distachyon could be divided into two groups with five paralogous gene pairs and three orthologous gene pairs. The expression analysis after perennial ryegrass was subjected to heat, salt, chromium (Cr), cadmium (Cd), polyethylene glycol (PEG) and abscisic acid (ABA) revealed that LpHsp90 genes were generally highly expressed under heat stress, but only two LpHsp90 proteins were expressed under Cr stresses. Additionally, the expression of the LpHsp90 proteins differed at each time point in all treatments. This study provides the basis for an understanding of the functions of LpHsp90 proteins in abiotic stress studies and in plant breeding.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12491
Author(s):  
Xianwen Meng ◽  
Jing Liu ◽  
Mingde Zhao

Background Flax (Linum usitatissimum) is an important crop for its seed oil and stem fiber. Really Interesting New Gene (RING) finger genes play essential roles in growth, development, and biotic and abiotic stress responses in plants. However, little is known about these genes in flax. Methods Here, we performed a systematic genome-wide analysis to identify RING finger genes in flax. Results We identified 587 RING domains in 574 proteins and classified them into RING-H2 (292), RING-HCa (181), RING-HCb (23), RING-v (53), RING-C2 (31), RING-D (2), RING-S/T (3), and RING-G (2). These proteins were further divided into 45 groups according to domain organization. These genes were located in 15 chromosomes and clustered into three clades according to their phylogenetic relationships. A total of 312 segmental duplicated gene pairs were inferred from 411 RING finger genes, indicating a major contribution of segmental duplications to the RING finger gene family expansion. The non-synonymous/synonymous substitution ratio of the segmentally duplicated gene pairs was less than 1, suggesting that the gene family was under negative selection since duplication. Further, most RING genes in flax were differentially expressed during seed development or in the shoot apex. This study provides useful information for further functional analysis of RING finger genes in flax and to develop gene-derived molecular markers in flax breeding.


Sign in / Sign up

Export Citation Format

Share Document