ventral pallidum
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 71)

H-INDEX

50
(FIVE YEARS 8)

2021 ◽  
Vol 15 ◽  
Author(s):  
Qiru Feng ◽  
Sile An ◽  
Ruiyu Wang ◽  
Rui Lin ◽  
Anan Li ◽  
...  

The ventral pallidum (VP) integrates reward signals to regulate cognitive, emotional, and motor processes associated with motivational salience. Previous studies have revealed that the VP projects axons to many cortical and subcortical structures. However, descriptions of the neuronal morphologies and projection patterns of the VP neurons at the single neuron level are lacking, thus hindering the understanding of the wiring diagram of the VP. In this study, we used recently developed progress in robust sparse labeling and fluorescence micro-optical sectioning tomography imaging system (fMOST) to label mediodorsal thalamus-projecting neurons in the VP and obtain high-resolution whole-brain imaging data. Based on these data, we reconstructed VP neurons and classified them into three types according to their fiber projection patterns. We systematically compared the axonal density in various downstream centers and analyzed the soma distribution and dendritic morphologies of the various subtypes at the single neuron level. Our study thus provides a detailed characterization of the morphological features of VP neurons, laying a foundation for exploring the neural circuit organization underlying the important behavioral functions of VP.


Cell Research ◽  
2021 ◽  
Author(s):  
Zhiyuan Liu ◽  
Qiumin Le ◽  
Yanbo Lv ◽  
Xi Chen ◽  
Jian Cui ◽  
...  

AbstractDopamine (DA) level in the nucleus accumbens (NAc) is critical for reward and aversion encoding. DA released from the ventral mesencephalon (VM) DAergic neurons increases the excitability of VM-projecting D1-dopamine receptor-expressing medium spiny neurons (D1-MSNs) in the NAc to enhance DA release and augment rewards. However, how such a DA positive feedback loop is regulated to maintain DA homeostasis and reward-aversion balance remains elusive. Here we report that the ventral pallidum (VP) projection of NAc D1-MSNs (D1NAc-VP) is inhibited by rewarding stimuli and activated by aversive stimuli. In contrast to the VM projection of D1-MSN (D1NAc-VM), activation of D1NAc-VP projection induces aversion, but not reward. D1NAc-VP MSNs are distinct from the D1NAc-VM MSNs, which exhibit conventional functions of D1-MSNs. Activation of D1NAc-VP projection stimulates VM GABAergic transmission, inhibits VM DAergic neurons, and reduces DA release into the NAc. Thus, D1NAc-VP and D1NAc-VM MSNs cooperatively control NAc dopamine balance and reward-aversion states.


2021 ◽  
Author(s):  
Nimrod Bernat ◽  
Rianne Campbell ◽  
Hyungwoo Nam ◽  
Mahashweta Basu ◽  
Tal Odesser ◽  
...  

The ventral pallidum (VP), a major component of the basal ganglia, plays a critical role in motivational disorders. It sends projections to many different brain regions but it is not yet known whether and how these projections differ in their cellular properties, gene expression patterns, connectivity and role in reward seeking. In this study, we focus on four major outputs of the VP - to the lateral hypothalamus (LH), ventral tegmental area (VTA), mediodorsal thalamus (MDT), and lateral habenula (LHb) - and examine the differences between them in 1) baseline gene expression profiles using projection-specific RNA-sequencing; 2) physiological parameters using whole-cell patch clamp; and 3) their influence on cocaine reward using chemogenetic tools. We show that these four VP efferents differ in all three aspects and highlight specifically differences between the projections to the LH and the VTA. These two projections originate largely from separate populations of neurons, express distinct sets of genes related to neurobiological functions, and show opposite physiological and behavioral properties. Collectively, our data demonstrates for the first time that VP neurons exhibit distinct molecular and cellular profiles in a projection-specific manner, suggesting that they represent different cell types.


2021 ◽  
Author(s):  
Gessynger Morais-Silva ◽  
Hyungwoo Nam ◽  
Rianne Campbell ◽  
Mahashweta Basu ◽  
Marco Pagliusi ◽  
...  

Background: Altered activity of the ventral pallidum (VP) underlies disrupted motivation after stress exposure. The VP is a very heterogeneous structure comprised of many different neuron types with distinct electrophysiological properties and projections. Neuronal PAS 1-positive (Npas1+) VP neurons are thought to send projections to brain regions critical for stress response. In this study, we evaluated how activity of VP Npas1+ neurons affect emotional behaviors and responses to social stress. Methods: We used a chemogenetic approach to manipulate VP Npas1+ neurons during social defeat stress (SDS) and behavioral tasks related to anxiety and motivation in Npas1-Cre mice. We employed a similar approach in females using the chronic witness defeat stress (CWDS). Finally, to characterize VP Npas1+ neuron circuitry and molecular identity we evaluated the projection targets of the VP Npas1+ neurons and performed RNA-seq on ribosome-associated mRNA from VP Npas1+ neurons. Results: Chemogenetic activation of VP Npas1+ neurons increased susceptibility to a subthreshold (S)SDS and anxiety-like behavior in the elevated plus maze and open field. Inhibition of VP Npas1+ neurons enhanced resilience to chronic (C)SDS and CWDS. We identified VP Npas1+ projections to the nucleus accumbens (NAc), ventral tegmental area (VTA), medial and lateral habenula (LHb), lateral hypothalamus (LH), thalamus, medial and lateral septum, and periaqueductal gray area. VP Npas1+ neurons displayed distinct transcriptomes representing distinct biological processes. Conclusions: Activity, of VP Npas1+ neurons, modulates susceptibility to social stressors and anxiety-like behavior. These outcomes could be related to their projections to brain regions that modulate reward and aversion.


2021 ◽  
Author(s):  
Michel Engeln ◽  
Megan E Fox ◽  
Ramesh Chandra ◽  
Eric Y Choi ◽  
Hyungwoo Nam ◽  
...  

Psychostimulant exposure alters the activity of ventral pallidum (VP) projection-neurons. However, the molecular underpinnings of these circuit dysfunctions are unclear. Using RNA-sequencing followed by circuit-specific gene expression assays, we revealed a key role for the VP to mediodorsal thalamus (VP-MDT) projection neurons in cocaine-related behaviors in mice. Our analyses demonstrated that the transcription factor Nr4a1 bidirectionally modulated dendritic spine dynamics in VP-MDT neurons and positively regulated pathological drug use.


Author(s):  
Anna Kruyer ◽  
Danielle Dixon ◽  
Ariana Angelis ◽  
Davide Amato ◽  
Peter W. Kalivas

AbstractGABAergic projections from the nucleus accumbens core to the dorsolateral ventral pallidum are necessary for drug-conditioned cues to initiate relapse-like drug seeking. Astrocytes in the ventral pallidum are situated perisynaptically and regulate GABA transmission through expression of GABA uptake transporters, but whether they are involved in regulating drug seeking is unknown. To determine the contribution of ventral pallidal astrocytes to heroin seeking, we labeled astrocytes in male and female rats with a membrane-bound fluorescent tag and used confocal microscopy to quantify astroglial expression of the GABA transporter GAT-3 and astrocyte synaptic proximity after withdrawal from heroin self-administration and during 15 min of cued heroin seeking. We found that GAT-3 was upregulated in rats that had extinguished heroin seeking, but not in animals that were withdrawn from heroin without extinction training or in rats that extinguished sucrose seeking. When GAT-3 upregulation was reversed using a vivo-morpholino oligo, heroin seeking was restored in the extinguished context and extinction of cued heroin seeking was disrupted compared to control animals. Although astrocyte synaptic proximity was not altered overall after heroin withdrawal, examination of astrocyte proximity to accumbens D1- or D2-expressing afferents revealed a selective increase in astrocyte proximity with D1-expressing terminals during extinction of heroin self-administration. Experimentally-induced reduction of astrocyte synaptic proximity through knockdown of the astrocyte-selective actin-binding protein ezrin also markedly disrupted extinction of heroin seeking. Notably, GAT-3 or ezrin knockdown had no impact on context- or cue-induced seeking in sucrose-trained animals. These data show that astrocytes in the ventral pallidum undergo plasticity after extinction of heroin use that reduces seeking and highlight the importance of astrocyte-neuron interactions in shaping behaviors associated with opioid use disorder.


2021 ◽  
Vol 118 (36) ◽  
pp. e2103642118
Author(s):  
Arndt-Lukas Klaassen ◽  
Anne Heiniger ◽  
Pilar Vaca Sánchez ◽  
Michael A. Harvey ◽  
Gregor Rainer

Daily life requires transitions between performance of well-practiced, automatized behaviors reliant upon internalized representations and behaviors requiring external focus. Such transitions involve differential activation of the default mode network (DMN), a group of brain areas associated with inward focus. We asked how optogenetic modulation of the ventral pallidum (VP), a subcortical DMN node, impacts task switching between internally to externally guided lever-pressing behavior in the rat. Excitation of the VP dramatically compromised acquisition of an auditory discrimination task, trapping animals in a DMN state of automatized internally focused behavior and impairing their ability to direct attention to external sensory stimuli. VP inhibition, on the other hand, facilitated task acquisition, expediting escape from the DMN brain state, thereby allowing rats to incorporate the contingency changes associated with the auditory stimuli. We suggest that VP, instant by instant, regulates the DMN and plays a deterministic role in transitions between internally and externally guided behaviors.


Sign in / Sign up

Export Citation Format

Share Document