central cavity
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 40)

H-INDEX

32
(FIVE YEARS 4)

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1009993
Author(s):  
Ying Li ◽  
Adrien Boes ◽  
Yuanyuan Cui ◽  
Shan Zhao ◽  
Qingzhen Liao ◽  
...  

SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their crucial roles in bacterial morphogenesis, SEDS proteins are one of the most promising targets for the development of new antibiotics. However, how SEDS proteins recognize their substrate lipid II, the building block of the PG layer, and polymerize it into glycan strands is still not clear. In this study, we isolated and characterized dominant-negative alleles of FtsW, a SEDS protein critical for septal PG synthesis during bacterial cytokinesis. Interestingly, most of the dominant-negative FtsW mutations reside in extracellular loops that are highly conserved in the SEDS family. Moreover, these mutations are scattered around a central cavity in a modeled FtsW structure, which has been proposed to be the active site of SEDS proteins. Consistent with this, we found that these mutations blocked septal PG synthesis but did not affect FtsW localization to the division site, interaction with its partners nor its substrate lipid II. Taken together, these results suggest that the residues corresponding to the dominant-negative mutations likely constitute the active site of FtsW, which may aid in the design of FtsW inhibitors.


2021 ◽  
Vol 118 (33) ◽  
pp. e2106702118
Author(s):  
Kamil Nosol ◽  
Rose Bang-Sørensen ◽  
Rossitza N. Irobalieva ◽  
Satchal K. Erramilli ◽  
Bruno Stieger ◽  
...  

ABCB4 is expressed in hepatocytes and translocates phosphatidylcholine into bile canaliculi. The mechanism of specific lipid recruitment from the canalicular membrane, which is essential to mitigate the cytotoxicity of bile salts, is poorly understood. We present cryogenic electron microscopy structures of human ABCB4 in three distinct functional conformations. An apo-inward structure reveals how phospholipid can be recruited from the inner leaflet of the membrane without flipping its orientation. An occluded structure reveals a single phospholipid molecule in a central cavity. Its choline moiety is stabilized by cation-π interactions with an essential tryptophan residue, rationalizing the specificity of ABCB4 for phosphatidylcholine. In an inhibitor-bound structure, a posaconazole molecule blocks phospholipids from reaching the central cavity. Using a proteoliposome-based translocation assay with fluorescently labeled phosphatidylcholine analogs, we recapitulated the substrate specificity of ABCB4 in vitro and confirmed the role of the key tryptophan residue. Our results provide a structural basis for understanding an essential translocation step in the generation of bile and its sensitivity to azole drugs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yun Yang ◽  
Jiwei Liu ◽  
Bradley R. Clarke ◽  
Laura Seidel ◽  
Jani R. Bolla ◽  
...  

AbstractBacterial extracellular polysaccharides (EPSs) play critical roles in virulence. Many bacteria assemble EPSs via a multi-protein “Wzx-Wzy” system, involving glycan polymerization at the outer face of the cytoplasmic/inner membrane. Gram-negative species couple polymerization with translocation across the periplasm and outer membrane and the master regulator of the system is the tyrosine autokinase, Wzc. This near atomic cryo-EM structure of dephosphorylated Wzc from E. coli shows an octameric assembly with a large central cavity formed by transmembrane helices. The tyrosine autokinase domain forms the cytoplasm region, while the periplasmic region contains small folded motifs and helical bundles. The helical bundles are essential for function, most likely through interaction with the outer membrane translocon, Wza. Autophosphorylation of the tyrosine-rich C-terminus of Wzc results in disassembly of the octamer into multiply phosphorylated monomers. We propose that the cycling between phosphorylated monomer and dephosphorylated octamer regulates glycan polymerization and translocation.


2021 ◽  
Vol 22 (7) ◽  
pp. 3572
Author(s):  
Jeff Abramson ◽  
Ernest M. Wright

Active transport of sugars into bacteria occurs through symporters driven by ion gradients. LacY is the most well-studied proton sugar symporter, whereas vSGLT is the most characterized sodium sugar symporter. These are members of the major facilitator (MFS) and the amino acid-Polyamine organocation (APS) transporter superfamilies. While there is no structural homology between these transporters, they operate by a similar mechanism. They are nano-machines driven by their respective ion electrochemical potential gradients across the membrane. LacY has 12 transmembrane helices (TMs) organized in two 6-TM bundles, each containing two 3-helix TM repeats. vSGLT has a core structure of 10 TM helices organized in two inverted repeats (TM 1–5 and TM 6–10). In each case, a single sugar is bound in a central cavity and sugar selectivity is determined by hydrogen- and hydrophobic- bonding with side chains in the binding site. In vSGLT, the sodium-binding site is formed through coordination with carbonyl- and hydroxyl-oxygens from neighboring side chains, whereas in LacY the proton (H3O+) site is thought to be a single glutamate residue (Glu325). The remaining challenge for both transporters is to determine how ion electrochemical potential gradients drive uphill sugar transport.


Author(s):  
Karan Kapoor ◽  
Sundar Thangapandian ◽  
Emad Tajkhorshid

AbstractProteins can sample a broad energetic landscape as they undergo conformational transition between different functional states. As key players in almost all cellular processes, proteins are important drug targets. Considering the different conformational states of proteins is therefore central for a successful drug-design strategy. Here we introduce a novel docking protocol, termed as extended-ensemble docking, pertaining to proteins that undergo large-scale (global) conformational changes during their function. In its application to multidrug ABC-transporter P-glycoprotein (Pgp), extensive non-equilibrium molecular dynamics simulations employing system-specific collective variables capturing the alternate access mechanism of Pgp, are first used to construct the transition cycle of the transporter. An extended set of conformational states representing the full transition between the inward- and the outward-facing states of Pgp, is then used to seed high-throughput docking calculations of a set of known substrates, non-substrates, and modulators of the transporter. Large differences are observed in the predicted binding affinities in the conformational ensemble, with compounds showing stronger binding affinities in intermediate conformations compared to the starting crystal structure. Hierarchical clustering of the individual binding modes of the different compounds shows all ligands preferably bind to the large central cavity of the protein, formed at the apex of the transmembrane domain (TMD), whereas only small binding populations are observed in the previously described R and H sites present in the individual TMD leaflets. The central cavity is further clustered into two major subsites: first subsite preferably binds transported substrates and high-affinity inhibitors, whereas the second subsite shows preference for larger substrates and low-affinity modulators. These central sites along with the low-affinity interaction sites present in the individual TMD leaflets may respectively correspond to the proposed high- and low-affinity binding sites in Pgp. We propose further optimization strategy for developing more potent inhibitor of Pgp, based on increasing its specificity to the extended-ensemble of the protein instead of using a single protein structure, as well as its selectivity for the high-affinity binding site. In contrast to earlier in-silico studies using single static structures of Pgp, our results show good correlation with other experimental studies, pointing to the importance of incorporating the global conformational flexibility of proteins in future drug-discovery endeavors.


Author(s):  
Stefan Milenkovic ◽  
Igor V Bodrenko ◽  
Armando Carpaneto ◽  
Matteo Ceccarelli

Subcellular and organellar mechanisms have manifested a prominent importance for a broad variety of processes that maintain cellular life on its most basic level. Mammalian Two-pore channels (TPCs) appear to...


2021 ◽  
Vol 77 (1) ◽  
pp. 117-125
Author(s):  
Xiaodong Wang ◽  
Ying Lyu ◽  
Yujia Ji ◽  
Ziyi Sun ◽  
Xiaoming Zhou

Apical sodium-dependent bile acid transporter (ASBT) retrieves bile acids from the small intestine and plays a pivotal role in enterohepatic circulation. Currently, high-resolution structures are available for two bacterial ASBT homologs (ASBTNM from Neisseria meningitides and ASBTYf from Yersinia frederiksenii), from which an elevator-style alternating-access mechanism has been proposed for substrate transport. A key concept in this model is that the substrate binds to the central cavity of the transporter so that the elevator-like motion can expose the bound substrate alternatingly to either side of the membrane during a transport cycle. However, no structure of an ASBT has been solved with a substrate bound in its central cavity, so how a substrate binds to ASBT remains to be defined. In this study, molecular docking, structure determination and functional analysis were combined to define and validate the details of substrate binding in ASBTYf. The findings provide coherent evidence to provide a clearer picture of how the substrate binds in the central cavity of ASBTYf that fits the alternating-access model.


PLoS Biology ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. e3001015
Author(s):  
Chaoyi Xu ◽  
Douglas K. Fischer ◽  
Sanela Rankovic ◽  
Wen Li ◽  
Robert A. Dick ◽  
...  

Reverse transcription, an essential event in the HIV-1 life cycle, requires deoxynucleotide triphosphates (dNTPs) to fuel DNA synthesis, thus requiring penetration of dNTPs into the viral capsid. The central cavity of the capsid protein (CA) hexamer reveals itself as a plausible channel that allows the passage of dNTPs into assembled capsids. Nevertheless, the molecular mechanism of nucleotide import into the capsid remains unknown. Employing all-atom molecular dynamics (MD) simulations, we established that cooperative binding between nucleotides inside a CA hexamer cavity results in energetically favorable conditions for passive translocation of dNTPs into the HIV-1 capsid. Furthermore, binding of the host cell metabolite inositol hexakisphosphate (IP6) enhances dNTP import, while binding of synthesized molecules like benzenehexacarboxylic acid (BHC) inhibits it. The enhancing effect on reverse transcription by IP6 and the consequences of interactions between CA and nucleotides were corroborated using atomic force microscopy, transmission electron microscopy, and virological assays. Collectively, our results provide an atomistic description of the permeability of the HIV-1 capsid to small molecules and reveal a novel mechanism for the involvement of metabolites in HIV-1 capsid stabilization, nucleotide import, and reverse transcription.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5670
Author(s):  
Yuji Kikukawa ◽  
Hiromasa Kitajima ◽  
Sho Kuwajima ◽  
Yoshihito Hayashi

A calix-shaped polyoxometalate, [V12O32]4− (V12), stabilizes an anion moiety in its central cavity. This molecule-sized container has the potential to control the reactivity of an anion. The highly-reactive cyanate is smoothly trapped by V12 to form [V12O32(CN)]5−. In the CH3NO2 solution, cyanate abstracts protons from CH3NO2, and the resultant CH2NO2− is stabilized in V12 to form [V12O32(CH2NO2)]5− (V12(CH2NO2)). A crystallographic analysis revealed the double-bond characteristic short bond distance of 1.248 Å between the carbon and nitrogen atoms in the nitromethane anion in V12. 1H and 13C NMR studies showed that the nitromethane anion in V12 must not be exchanged with the nitromethane solvent. Thus, the V12 container restrains the reactivity of anionic species.


Sign in / Sign up

Export Citation Format

Share Document