time system
Recently Published Documents


TOTAL DOCUMENTS

2047
(FIVE YEARS 280)

H-INDEX

43
(FIVE YEARS 6)

Author(s):  
Ajitesh Kumar

Background: Nowadays, there is an immense increase in the demand for high power computation of real-time workloads and the trend towards multi-core and multiprocessor CPUs. The real-time system needs to be implemented upon multiprocessor platforms. Introduction: The nature of processors in an embedded real-time system is changing day by day. The two most significant challenges in a multiprocessor environment are scheduling and synchronization. The popularity of real-time multi-core systems has exploded in recent years, driving the rapid development of a variety of methods for multiprocessor scheduling of essential tasks, on the other hand, these systems have constraints when it comes to maintaining synchronization in order to access shared resources. Method: This research work presents a systematic review of different existing scheduling algorithms and synchronization protocols for shared resources in a real-time multiprocessor environment. The manuscript also presents a study based on various metrics of resource scheduling and comparison among different resource scheduling techniques. Result and Conclusion: The survey classifies open issues, key challenges, and likely useful research directions. Finally, we accept that there is still a lot of capacity in getting better resource management and further maintaining the overall quality. The paper considers such a future path of research in this field.


2021 ◽  
Author(s):  
poonam sahu ◽  
Deepak Fulwani

The work proposes static and dynamic input-based event-triggered controllers for a network resource-constrained environment. The controller is designed for a discrete-time system using a low-gain approach, where feedback gain is designed as a function of a user-defined parameter. Depending on the event density, the low-gain parameter can be adjusted to increase the inter-event time between two consecutive events at a particular instant. Thus the demand for computational and network resources can be reduced


2021 ◽  
Author(s):  
poonam sahu ◽  
Deepak Fulwani

The work proposes static and dynamic input-based event-triggered controllers for a network resource-constrained environment. The controller is designed for a discrete-time system using a low-gain approach, where feedback gain is designed as a function of a user-defined parameter. Depending on the event density, the low-gain parameter can be adjusted to increase the inter-event time between two consecutive events at a particular instant. Thus the demand for computational and network resources can be reduced


2021 ◽  
Author(s):  
Dongsheng Zhang ◽  
Gang Zhang ◽  
Jiawei Wu ◽  
Yunjie Xiao ◽  
Liang Liang ◽  
...  

We propose a symbol synchronization algorithm for high-speed data streams in IMDD-OOFDM system using a training sequence. Sampling point phase offset approximately sustains within ±π/32 and symbol synchronization deviation stabilizes within ±0.5 sampling point in a real-time system of 1.5Gsa/s.


2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Changchun Sun ◽  
Qicheng Xu

A three-dimensional smooth continuous-time system with a parameter and two quadratic terms is constructed and a spherical attractor is generated. There exist multiple coexisting spherical attractors based on offset boosting. Two classes of switching signals that depend on the time and the state are designed respectively. By employing a parameter switching control technique, multiple spherical attractors can be generated. Simultaneously, complex chaotic attractors can also be generated by designing a state-dependent switching signal. Numerical examples and corresponding simulations show the effectiveness of the switching control technique.


Sign in / Sign up

Export Citation Format

Share Document