classification result
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 70)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Zhongguo Wang ◽  
Bao Zhang

For English toxic comment classification, this paper presents the model that combines Bi-GRU and CNN optimized by global average pooling (BG-GCNN) based on the bidirectional gated recurrent unit (Bi-GRU) and global pooling optimized convolution neural network (CNN) . The model treats each type of toxic comment as a binary classification. First, Bi-GRU is used to extract the time-series features of the comment and then the dimensionality is reduced through global pooling optimized convolution neural network. Finally, the classification result is output by Sigmoid function. Comparative experiments show the BG-GCNN model has a better classification effect than Text-CNN, LSTM, Bi-GRU, and other models. The Macro-F1 value of the toxic comment dataset on the Kaggle competition platform is 0.62. The F1 values of the three toxic label classification results (toxic, obscene, and insult label) are 0.81, 0.84, and 0.74, respectively, which are the highest values in the comparative experiment.


2022 ◽  
Vol 10 (4) ◽  
pp. 617-623
Author(s):  
Silvia Elsa Suryana ◽  
Budi Warsito ◽  
Suparti Suparti

Telemarketing is another form of marketing which is conducted via telephone. Bank can use telemarketing to offer its products such as term deposit. One of the most important strategy to the success of telemarketing is opting the potential customer to create effective telemarketing. Predicting the success of telemarketing can use machine learning. Gradient boosting is machine learning method with advanced decision tree. Gardient boosting involves many classification trees which are continually upgraded from previous tree. The optimal classification result cannot be separated from the role of the optimal hyperparameter.  Hyperopt is Python library that can be used to tune hyperparameter effectively because it uses Bayesian optimization. Hyperopt uses hyperparameter prior distribution to find optimal hyperparameter. Data in this study including 20 independent variables and binary dependent variable which has ‘yes’ and ‘no’ classes. The study showed that gradient boosting reached classification accuracy up to 90,39%, precision 94,91%, and AUC 0,939. These values describe gradient boosting method is able to predict both classes ‘yes’ and ‘no’ relatively accurate.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 315
Author(s):  
Yeongwon Lee ◽  
Byungyong You

In this paper, we propose a new free space detection algorithm for autonomous vehicle driving. Previous free space detection algorithms often use only the location information of every frame, without information on the speed of the obstacle. In this case, there is a possibility of creating an inefficient path because the behavior of the obstacle cannot be predicted. In order to compensate for the shortcomings of the previous algorithm, the proposed algorithm uses the speed information of the obstacle. Through object tracking, the dynamic behavior of obstacles around the vehicle is identified and predicted, and free space is detected based on this. In the free space, it is possible to classify an area in which driving is possible and an area in which it is not possible, and a route is created according to the classification result. By comparing and evaluating the path generated by the previous algorithm and the path generated by the proposed algorithm, it is confirmed that the proposed algorithm is more efficient in generating the vehicle driving path.


2021 ◽  
Vol 10 (6) ◽  
pp. 3220-3227
Author(s):  
Van-Dung Pham ◽  
Thanh-Long Cung

The purpose of this paper is to propose an approach of re-organizing input data to recognize emotion based on short signal segments and increase the quality of emotional recognition using physiological signals. MIT's long physiological signal set was divided into two new datasets, with shorter and overlapped segments. Three different classification methods (support vector machine, random forest, and multilayer perceptron) were implemented to identify eight emotional states based on statistical features of each segment in these two datasets. By re-organizing the input dataset, the quality of recognition results was enhanced. The random forest shows the best classification result among three implemented classification methods, with an accuracy of 97.72% for eight emotional states, on the overlapped dataset. This approach shows that, by re-organizing the input dataset, the high accuracy of recognition results can be achieved without the use of EEG and ECG signals.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7470
Author(s):  
Ester Vidaña-Vila ◽  
Joan Navarro ◽  
Dan Stowell ◽  
Rosa Ma Alsina-Pagès

Many people living in urban environments nowadays are overexposed to noise, which results in adverse effects on their health. Thus, urban sound monitoring has emerged as a powerful tool that might enable public administrations to automatically identify and quantify noise pollution. Therefore, identifying multiple and simultaneous acoustic sources in these environments in a reliable and cost-effective way has emerged as a hot research topic. The purpose of this paper is to propose a two-stage classifier able to identify, in real time, a set of up to 21 urban acoustic events that may occur simultaneously (i.e., multilabel), taking advantage of physical redundancy in acoustic sensors from a wireless acoustic sensors network. The first stage of the proposed system consists of a multilabel deep neural network that makes a classification for each 4-s window. The second stage intelligently aggregates the classification results from the first stage of four neighboring nodes to determine the final classification result. Conducted experiments with real-world data and up to three different computing devices show that the system is able to provide classification results in less than 1 s and that it has good performance when classifying the most common events from the dataset. The results of this research may help civic organisations to obtain actionable noise monitoring information from automatic systems.


2021 ◽  
Vol 3 (1) ◽  
pp. 20
Author(s):  
Antomy David Ronaldo

Soil classification is a growing research area in the current era. Various studies have proposed different techniques to deal with the issues, including rule-based, statistical, and traditional learning methods. However, the plans remain drawbacks to producing an accurate classification result. Therefore, we propose a novel technique to address soil classification by implementing a deep learning algorithm to construct an effective model. Based on the experiment result, the proposed model can obtain classification results with an accuracy rate of 97% and a loss of 0.1606. Furthermore, we also received an F1-score of 98%.


2021 ◽  
pp. 1-16
Author(s):  
Zong-fang Ma ◽  
Zhe Liu ◽  
Chan Luo ◽  
Lin Song

Classification of incomplete instance is a challenging problem due to the missing features generally cause uncertainty in the classification result. A new evidential classification method of incomplete instance based on adaptive imputation thanks to the framework of evidence theory. Specifically, the missing values of different incomplete instances in test set are adaptively estimated based on Shannon entropy and K-nearest centroid neighbors (KNCNs) technology. The single or multiple edited instances (with estimations) then are classified by the chosen classifier to get single or multiple classification results for the instances with different discounting (weighting) factors, and a new adaptive global fusion method finally is proposed to unify the different discounted results. The proposed method can well capture the imprecision degree of classification by submitting the instances that are difficult to be classified into a specific class to associate the meta-class and effectively reduce the classification error rates. The effectiveness and robustness of the proposed method has been tested through four experiments with artificial and real datasets.


2021 ◽  
Author(s):  
Lam Pham ◽  
Hieu Tang ◽  
Anahid Jalal ◽  
Alexander Schindler ◽  
Ross King

In this paper, we presents a low-complexitydeep learning frameworks for acoustic scene classification(ASC). The proposed framework can be separated into threemain steps: Front-end spectrogram extraction, back-endclassification, and late fusion of predicted probabilities.First, we use Mel filter, Gammatone filter and ConstantQ Transfrom (CQT) to transform raw audio signal intospectrograms, where both frequency and temporal featuresare presented. Three spectrograms are then fed into threeindividual back-end convolutional neural networks (CNNs),classifying into ten urban scenes. Finally, a late fusion ofthree predicted probabilities obtained from three CNNs isconducted to achieve the final classification result. To reducethe complexity of our proposed CNN network, we applytwo model compression techniques: model restriction anddecomposed convolution. Our extensive experiments, whichare conducted on DCASE 2021 (IEEE AASP Challenge onDetection and Classification of Acoustic Scenes and Events)Task 1A development dataset, achieve a low-complexity CNNbased framework with 128 KB trainable parameters andthe best classification accuracy of 66.7%, improving DCASEbaseline by 19.0%.


2021 ◽  
Vol 13 (19) ◽  
pp. 3945
Author(s):  
Bin Wang ◽  
Linghui Xia ◽  
Dongmei Song ◽  
Zhongwei Li ◽  
Ning Wang

Sea ice information in the Arctic region is essential for climatic change monitoring and ship navigation. Although many sea ice classification methods have been put forward, the accuracy and usability of classification systems can still be improved. In this paper, a two-round weight voting strategy-based ensemble learning method is proposed for refining sea ice classification. The proposed method includes three main steps. (1) The preferable features of sea ice are constituted by polarization features (HH, HV, HH/HV) and the top six GLCM-derived texture features via a random forest. (2) The initial classification maps can then be generated by an ensemble learning method, which includes six base classifiers (NB, DT, KNN, LR, ANN, and SVM). The tuned voting weights by a genetic algorithm are employed to obtain the category score matrix and, further, the first coarse classification result. (3) Some pixels may be misclassified due to their corresponding numerically close score value. By introducing an experiential score threshold, each pixel is identified as a fuzzy or an explicit pixel. The fuzzy pixels can then be further rectified based on the local similarity of the neighboring explicit pixels, thereby yielding the final precise classification result. The proposed method was examined on 18 Sentinel-1 EW images, which were captured in the Northeast Passage from November 2019 to April 2020. The experiments show that the proposed method can effectively maintain the edge profile of sea ice and restrain noise from SAR. It is superior to the current mainstream ensemble learning algorithms with the overall accuracy reaching 97%. The main contribution of this study is proposing a superior weight voting strategy in the ensemble learning method for sea ice classification of Sentinel-1 imagery, which is of great significance for guiding secure ship navigation and ice hazard forecasting in winter.


2021 ◽  
pp. 1-57
Author(s):  
MARLIES GERBER ◽  
PHILIPP KUNDE

Abstract Foreman and Weiss [Measure preserving diffeomorphisms of the torus are unclassifiable. Preprint, 2020, arXiv:1705.04414] obtained an anti-classification result for smooth ergodic diffeomorphisms, up to measure isomorphism, by using a functor $\mathcal {F}$ (see [Foreman and Weiss, From odometers to circular systems: a global structure theorem. J. Mod. Dyn.15 (2019), 345–423]) mapping odometer-based systems, $\mathcal {OB}$ , to circular systems, $\mathcal {CB}$ . This functor transfers the classification problem from $\mathcal {OB}$ to $\mathcal {CB}$ , and it preserves weakly mixing extensions, compact extensions, factor maps, the rank-one property, and certain types of isomorphisms. Thus it is natural to ask whether $\mathcal {F}$ preserves other dynamical properties. We show that $\mathcal {F}$ does not preserve the loosely Bernoulli property by providing positive and zero-entropy examples of loosely Bernoulli odometer-based systems whose corresponding circular systems are not loosely Bernoulli. We also construct a loosely Bernoulli circular system whose corresponding odometer-based system has zero entropy and is not loosely Bernoulli.


Sign in / Sign up

Export Citation Format

Share Document