marine clay
Recently Published Documents


TOTAL DOCUMENTS

707
(FIVE YEARS 166)

H-INDEX

37
(FIVE YEARS 7)

2022 ◽  
Vol 23 (1) ◽  
pp. 1-12
Author(s):  
Diana Che Lat ◽  
Ismacahyadi Bagus Mohamed Jais ◽  
Nazri Ali ◽  
Nor Zurairahetty Mohd Yunus ◽  
Nor Hibatul Wafi Nor Zarin ◽  
...  

ABSTRACT: Consolidation settlement occurs when a saturated soil is subjected to an increase in overburden pressure that causes a volume change in the soil. When a lightweight material is used as a ground improvement, the stress is reduced as the soft soil is partially removed and replaced by the lightweight material. In addition, the improved ground with lightweight material has a potential to uplift due to the buoyancy of lightweight material. The uplift force reduces the stress imposed on the underlying soil as it acts in the upward direction, thus further reducing the consolidation settlement. This study is executed to produce an alternative equation for consolidation settlement incorporating the buoyancy effect for lightweight polyurethane (PU) foam as a ground improvement method. A Rowe Cell consolidation laboratory test was conducted on untreated marine clay soil as well as on improved marine clay with different thicknesses of lightweight PU foam. Validation of the laboratory test results was done by finite element analysis, PLAXIS 2D. The thickness of PU foam governs the buoyancy and the hydrostatic pressure of water displaced by PU foam, which is incorporated in the alternative equation.  The alternative consolidation settlement equation is applicable for ground improved with lightweight polyurethane foam and found to be more economical and practical as the buoyancy is taken into account in the equation. ABSTRAK: Mendapan pengukuhan berlaku apabila tanah tepu mengalami peningkatan tekanan beban yang menyebabkan perubahan isipadu tanah. Apabila bahan ringan digunakan sebagai penambahbaikan tanah, tekanan akan berkurang kerana sebahagian tanah lembut dikeluarkan dan diganti dengan bahan ringan. Selain itu, tanah yang diperbaiki dengan bahan ringan berpotensi untuk terangkat ke atas keranan daya apung bahan ringan. Daya angkat bahan ringan mengurangkan tekanan yang dikenakan ke atas tanah kerana daya bertindak ke arah atas, dan seterusnya megurangkan mendapan pengukuhan. Kajian ini dijalankan untuk menghasilkan persamaan alternatif bagi mendapan pengukuhan dan digabungkan dengan kesan daya apung untuk busa poliuretena ringan (PU) sebagai kaedah penambahbaikan tanah. Ujian makmal mendapan pengukuhan menggunakan peralatan Rowe Cell dilakukan pada tanah liat marin yang asal serta yang diperbaiki dengan ketebalan busa PU ringan yang berbeza. Pengesahan hasil ujian makmal dilakukan dengan analisis elemen terhingga, PLAXIS 2D. Ketebalan busa PU mempengaruhi daya apung dan tekanan hidrostatik bagi kedalaman air yang disesarkan oleh busa PU dan digabungkan dalam persamaan alternatif. Persamaan alternatif mendapan pengukuhan tersebut boleh digunapakai untuk pembaikan tanah menggunakan bahan ringan busa poliuretena dan didapati menjimatkan kos dan praktikal kerana keapungan diambilkira didalam persamaan tersebut.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Lei Sun

To gain a better understanding of the undrained deformation characteristic of saturated marine clay soil subjected to vehicle cyclic traffic load, a sophisticated dynamic triaxial was used to conduct a variety of undrained one-way compression cyclic experiments with variable confining pressure (VCP) as well as constant confining pressure (CCP). The results indicate that, compared to CCP test results, VCP is helpful to raise the axial resilient modulus (Mr) and restrain the permanent plastic strain ( ε a p ) development of the specimens. By normalization analysis of the measured data of Mr and ε a p , the virtually unique correlation between normalized average resilient modulus, normalized permanent axial strain after 1,000 loading cycles, and normalized mean normal stress is established, respectively, regardless of the values of CSR. Additionally, the VCP influence on ε a p is quantified and fitted by a power law function, which can be used for subsoil deformation prediction and provides new insights into the mechanics of strain accumulation under undrained cyclic loading conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Weijuan Geng ◽  
Hao Liu ◽  
Jie Yin ◽  
Yongwei Du ◽  
Daniel Kumah

This study evaluates the compression behaviors of a soft marine clay reinforced with waste shredded tire (WST) at different sizes (<0.5 mm, 0.5–2.0 mm, and 2.0–4.0 mm) and contents (15%, 35%, and 50%). Results from compression tests indicate that the compression index (Cc) of WST-reinforced soft clay decreases with increasing WST shred size and content. The swelling index (Cs) increases as the WST shred size and content increase. The difference in compression curves becomes more significant for composite reinforced at large shred size. The void indexes of WST-reinforced Lianyungang clay can be well normalized regardless of WST shred size and content by a regression line. The WST dominates the compression behavior of the WST-clay composite, as the WST would be compressed prior to the clay particles. The results in this study provide an optimum WST content at 50% with shred size of 2.0–4.0 mm for reinforcing the Lianyungang marine clay for achieving higher compressibility, contributing to the input database of machine learning for WST-reinforced soil.


Author(s):  
Huayang Lei ◽  
Lei Wang ◽  
Weidi Zhang ◽  
Mingjing Jiang ◽  
Yu Bo ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 (12) ◽  
pp. 1454
Author(s):  
Liyang Xu ◽  
Zihai Yan ◽  
Jiajia Yan ◽  
Qiliang Xu ◽  
Jiancai Zhu ◽  
...  

Crucial mechanical-chemical (MC) interactions occur during the cement hydration process in cement marine clay; however, the role of such an important element of the resulting strength has been subject to less investigation, particularly from the theoretical perspective. To overcome this scientific gap, an efficient strength-based model accounting for the coupled MC processes is proposed here. Based on the analysis of the cement hydration mechanism, the porosity was chosen as the main factor to characterize the influence of the MC interactions on the overall response. To verify the accuracy of the MC model, the unconfined compressive strength (UCS) experiment was conducted for the cement marine clay samples, and the corresponding simulation model was constructed using COMSOL multiphysics®. In addition, a comparison between the predicted results by the existing three strength models and the proposed MC model was performed. Subsequently, the sensitivity analysis and identification of mechanical parameters were carefully carried out. The obtained results show that the UCS strength for Taizhou clay ranges from 10.21 kPa to 354.2 kPa as the cement content increases from 10% to 20%, and the curing time varies from 3 days to 28 days. The mechanical parameters in the MC model can be obtained according to the porosity level. A reasonably good agreement between the UCS strength results of simulations and the experimentally observed data is reported. Additionally, the predicted UCS strength results by the MC model demonstrate the best correspondence with the measured values, indicating the high efficacy of the established model.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2259
Author(s):  
Lisha Luo ◽  
Zhifu Shen ◽  
Hongmei Gao ◽  
Zhihua Wang ◽  
Xin Zhou

Marine clay has been attracting in-depth research on its mechanical behavior and internal structure evolution, which are crucial to marine infrastructure safety. In the formation process of marine clay, including the sedimentation and consolidation stages, the compression behavior and internal structure evolution are highly dependent on the pore water salinity. Discrete element method (DEM) simulation is a powerful tool to study the microscopic mechanics behind the complicated macroscopic mechanical behavior of marine clay. In this study, a DEM simulation scheme is systematically proposed to numerically study the macroscopic beahvior and microscopic structure evolution of marine clay in one-dimensional compression that mimics the marine clay formation process. First, the proposed calculation scheme for double layer repulsive interaction and van der Waals interaction is introduced. Then, the developed DEM simulation scheme is validated by satisfactorily reproducing the experimentally observed one-dimensional compression curves and internal structure transition from an edge-to-edge/edge-to-face flocculated structure to a face-to-face dispersed structure. Finally, evolutions of coordinate number and fabric anisotropy are quantitatively evaluated in the microscopic view. The noticeable effects of ion concentration on the internal structure evlotion and mechanical behavior of marine clay have been examined and discussed.


2021 ◽  
pp. 106502
Author(s):  
Kun Pan ◽  
Zonghao Yuan ◽  
Chaofa Zhao ◽  
Junhao Tong ◽  
Zhongxuan Yang

Author(s):  
Sujata Fulambarkar ◽  
Gaurav Bangari ◽  
Bappaditya Manna ◽  
J. T. Shahu

Sign in / Sign up

Export Citation Format

Share Document