sheath cells
Recently Published Documents


TOTAL DOCUMENTS

366
(FIVE YEARS 29)

H-INDEX

46
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Xin Li ◽  
Noor Singh ◽  
Camille Miller ◽  
India Washington ◽  
Bintou Sosseh ◽  
...  

The C. elegans adult hermaphrodite germ line is surrounded by a thin tube formed by somatic sheath cells that support germ cells as they mature from the stem-like mitotic state through meiosis, gametogenesis and ovulation. Recently, we discovered that the distal-most Sh1 sheath cells associate with mitotic germ cells as they exit the niche. Here we report that these distal sheath-associated germ cells differentiate first in animals with temperature-sensitive mutations affecting germ cell state, and stem-like germ cells are maintained distal to the Sh1 boundary. We analyze several markers of the distal sheath, which is best visualized with endogenously tagged membrane proteins, as overexpressed fluorescent proteins fail to localize to distal membrane processes and can cause gonad morphology defects. However, such reagents with highly variable expression can be used to determine the relative positions of the two Sh1 cells, one of which often extends further distal than the other.


2021 ◽  
Author(s):  
Lei Hua ◽  
Sean R. Stevenson ◽  
Ivan Reyna-Llorens ◽  
Haiyan Xiong ◽  
Stanislav Kopriva ◽  
...  

Abstract Leaves comprise multiple cell types but our knowledge of the patterns of gene expression that underpin their functional specialization is fragmentary. Our understanding and ability to undertake rational redesign of these cells is therefore limited. We aimed to identify genes associated with the incompletely understood bundle sheath of C3 plants, which represents a key target associated with engineering traits such as C4 photosynthesis into rice. To better understand veins, bundle sheath and mesophyll cells of rice we used laser capture microdissection followed by deep sequencing. Gene expression of the mesophyll is conditioned to allow coenzyme metabolism and redox homeostasis as well as photosynthesis. In contrast, the bundle sheath is specialized in water transport, sulphur assimilation and jasmonic acid biosynthesis. Despite the small chloroplast compartment of bundle sheath cells, substantial photosynthesis gene expression was detected. These patterns of gene expression were not associated with presence/absence of particular transcription factors in each cell type, but rather gradients in expression across the leaf. Comparative analysis with C3Arabidopsis identified a small gene-set preferentially expressed in bundle sheath cells of both species. This included genes encoding transcription factors from fourteen orthogroups, and proteins allowing water transport, sulphate assimilation and jasmonic acid synthesis. The most parsimonious explanation for our findings is that bundle sheath cells from the last common ancestor of rice and Arabidopsis was specialized in this manner, and since the species diverged these patterns of gene expression have been maintained. Significance statement The role of bundle sheath cells in C4 species have been studied intensively but this is not the case in leaves that use the ancestral C3 pathway. Here, we show that gene expression in the bundle sheath of rice is specialized to allow sulphate and nitrate reduction, water transport and jasmonate synthesis, and comparative analysis with Arabidopsis indicates ancient roles for bundle sheath cells in water transport, sulphur and jasmonate synthesis.


2021 ◽  
Author(s):  
Tanmayee Torne ◽  
Yael Grunwald ◽  
Ahan Dalal ◽  
Adi Yaaran ◽  
Menachem Moshelion ◽  
...  

ABSTRACTBACKGROUND AND HYPOTHESIS•Under water deprivation, in many perennial species, the stress hormone, ABA, appears in the xylem sap in the shoot (including leaf) veins and the xylem sap pH (pHEXT) increases. This study aimed to test the hypothesis that ABA is the signal for an altered proton balance of the leaf-vein-enwrapping bundle sheath cells (BSCs).METHODS•Plant Material. We used a few Arabidopsis thaliana (L.) Heynh. genotypes: wildtype (WT) of two accessions, Landsberg erecta (Ler) and Columbia (Col), and a few mutants and transformants in these backgrounds.•H+-Pumps activities. We monitored ABA effects on the H+-pump activities in the BSCs cytosol-delimiting membranes (plasma membrane and tonoplast) by monitoring the cytosol and the xylem pH, and the membrane potential (EM), by imaging the fluorescence of pH- and membrane potential (EM)-reporting probes: (a) the BSCs’ pHEXT – with the ratiometric fluorescent dye FITC-dextran petiole-fed into detached leaves in unbuffered xylem perfusion solution (XPS), (b) the BSCs’ pHCYT – with the ratiometric dye SNARF1 loaded into BSCs isolated protoplasts, and (c) the BSCs’ EM – with the ratiometric dye di- 8-ANEPPS.RESULTS•ABA increased the pHEXT; this response was abolished in an abi1-1 mutant with impaired signaling via a PP2C (ABI1) and in an aha2-4 mutant with knocked-down AHA2;•ABA depolarized the WT BSCs;•ABA increased pHCYT irrespective of AHA2 activity (i.e., whether or not AHA was inhibited by vanadate, or in the aha2-4 mutant);•The ABA-induced cytosol alkalinization was abolished in the absence of VHA activity (i.e., when VHA was inhibited by bafilomycin A1, or in the vha-a2 vha-a3 double mutant with inactive VHA);•All these results resemble the ABA effect on GCs;•In contrast to GCs, AHA2 and not AHA1 is the ABA major target in BSCs;•Blue light (BL) enabled the response of the BSCs’ VHA to ABA;•The ABA- and BL-signaling pathways acting on both BSCs’ pumps, AHA2 and VHA, are likely to be BSCs autonomous, based on (a) the presence in the BSCs of many genes of the ABA- and BL-signaling pathways and (b) ABA responses (depolarization and pHCYT elevation) demonstrated under BL in isolated protoplasts.SIGNIFICANCE STATEMENTWe reveal here an alkalinizing effect of the plant drought-stress hormone ABA on the pH on both sides of the plasmalemma of the vein-enwrapping bundle sheath cells (BSCs), due to ABA inhibition of the BSCs’ AHA2, the plasmalemma H+- ATPase and stimulation of VHA, their vacuolar H+-ATPase. Since pH affects the BSCs’ selective regulation of solute and water fluxes into the leaf, these H+- pumps may be attractive targets for manipulations aiming to improve plant drought response.


2021 ◽  
pp. dmm.047001
Author(s):  
Paco López-Cuevas ◽  
Luke Deane ◽  
Yushi Yang ◽  
Chrissy L Hammond ◽  
Erika Kague

Notochordal cells play a pivotal role in vertebral column patterning, contributing to the formation of the inner architecture of intervertebral discs (IVDs). Their disappearance during development has been associated with reduced repair capacity and IVD degeneration. Notochord cells can give rise to chordomas, a highly invasive bone cancer associated with late diagnosis. Understanding the impact of neoplastic cells during development and on the surrounding vertebral column could open avenues for earlier intervention and therapeutics. We investigated the impact of transformed notochord cells in the zebrafish skeleton using a RAS expressing line in the notochord under the control of the Kita promoter, with the advantage of adulthood endurance. Transformed cells caused damage in the notochord and destabilised the sheath layer triggering a wound repair mechanism, with enrolment of sheath cells (col9a2+) and expression of wt1b, similar to induced notochord wounds. Moreover, increased recruitment of neutrophils and macrophages, displaying abnormal behaviour in proximity to the notochord sheath and transformed cells, supported parallels between chordomas, wound and inflammation. Cancerous notochordal cells interfere with differentiation of sheath cells to form chordacentra domains leading to fusions and vertebral clefts during development. Adults displayed IVD irregularities reminiscent of degeneration; reduced bone mineral density, increased osteoclast activity; while disorganised osteoblasts and collagen indicate impaired bone homeostasis. By depleting inflammatory cells, we abrogated chordoma development and rescued the skeletal features of the vertebral column. Therefore, we showed that transformed notochord cells alter the skeleton during life, causing a wound-like phenotype and activating chronic wound response, suggesting parallels between chordoma, wound, IVD degeneration and inflammation, highlighting inflammation as a promising target for future therapeutics.


2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Veronica Persico ◽  
Giuliano Callaini ◽  
Maria Giovanna Riparbelli

The Drosophila eye displays peculiar sensory organs of unknown function, the mechanosensory bristles, that are intercalated among the adjacent ommatidia. Like the other Drosophila sensory organs, the mechanosensory bristles consist of a bipolar neuron and two tandemly aligned centrioles, the distal of which nucleates the ciliary axoneme and represents the starting point of the ciliary rootlets. We report here that the centriole associated protein Sas-4 colocalizes with the short ciliary rootlets of the mechanosensory bristles and with the elongated rootlets of chordotonal and olfactory neurons. This finding suggests an unexpected cytoplasmic localization of Sas-4 protein and points to a new underscored role for this protein. Moreover, we observed that the sheath cells associated with the sensory neurons also display two tandemly aligned centrioles but lacks ciliary axonemes, suggesting that the dendrites of the sensory neurons are dispensable for the assembly of aligned centrioles and rootlets.


Sign in / Sign up

Export Citation Format

Share Document