feedforward controller
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 61)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
Liqun Cheng ◽  
Wanzhong Chen ◽  
Liguo Tian

Piezoelectric actuator (PEA) is widely applied in the field of micro/nano high precision positioning. However PEA has the phenomenon of hysteresis non-linearity between input voltage and output displacement, due to the natural property of piezoelectric materials. The PEA hysteresis can be compensated by hysteresis models, which makes the input voltage and output displacement more linearity. The research work on compensation of PEA hysteresis by using various hysteresis models has been being a hot topic. This paper presents a modified direct inverse rate-independent Prandtl–Ishlinskii (PI) (MDIPI) model for compensating the hysteresis of PEA. The proposed MDIPI model has two different sets of operators compared with classical PI (CPI) model having one set of operators. For the two sets operators in MDIPI model one is rate operators and the other is modified classical operators. By combining the two sets operators, the MDIPI model has the properties of the adaption and accuracy in hysteresis compensation. The MDIPI model can be used as feedforward controller to compensate different reference trajectories. Parameters of MDIPI model are calculated by matlab optimization tool box. The experiments of compensating the complex displacement trajectory and sinusoidal trajectory are validated on a platform of commercial PEA. The MDIPI model has achieved more accurate results than the Krasnosel’skii–Pokrovkii (KP), Preisach and CPI models. It is effective in improving the accuracy of PEA hysteresis compensation.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6321
Author(s):  
Jieun Lee ◽  
Seokkwon Jeong

A sliding mode control (SMC) technique based on a state observer with a Kalman filter and feedforward controller was established for a variable-speed refrigeration system (VSRS) to ensure robust control against model uncertainties and disturbances, including noise. The SMC was designed using a state-space model transformed from a practical transfer function model, which was derived by conducting dynamic characteristic experiments. Fewer parameters affecting the model uncertainty were required to be identified, which facilitated modeling. The state observer for estimating the state variables was designed using a Kalman filter to ensure robustness against noise. A feedforward controller was added to the control system to compensate for the deterioration in the transient characteristics due to the saturation function used to avoid chattering. A genetic algorithm was used to alleviate the trial and error involved in determining the design parameters of the saturation function and select optimal values. Simulations and experiments were conducted to verify the control performance of the proposed SMC. The results show that the proposed controller can realize robust temperature control for a VSRS despite stepwise changes in the reference and external heat load, and avoid the trial and error process to design parameters for the saturation function.


2021 ◽  
Vol 10 (4) ◽  
pp. 0-0

This paper presents the mathematical design and implementation of a robust H_2 output feedback controller for the vertical nonlinear coupled-tank system. Considering the growth of the complicated chemical processes in industries in the last decades, the necessity for the controllers with high robustness and proficiency is demanded. Therefore, to overcome some deficiencies of classical controllers such as Proportional Integral (PI), the robust H_2 output feedback controller is proposed to control the liquid level of the coupled tank system benchmark. Because of the nonlinearity of the system and the interactions between two tanks, the behavior of the controller in terms of the performance and disturbance rejection is on the main scene. The Linear Matrix Inequalities (LMI) is used to derive the design procedure. The effectiveness of the proposed approach in the setpoint tracking is highlighted in comparison with the PI plus feedforward controller and the acceptable results are achieved.


2021 ◽  
Vol 10 (4) ◽  
pp. 1-12
Author(s):  
Jaffar Seyyed Esmaeili ◽  
Abdullah Başçi

This paper presents the mathematical design and implementation of a robust H_2 output feedback controller for the vertical nonlinear coupled-tank system. Considering the growth of the complicated chemical processes in industries in the last decades, the necessity for the controllers with high robustness and proficiency is demanded. Therefore, to overcome some deficiencies of classical controllers such as Proportional Integral (PI), the robust H_2 output feedback controller is proposed to control the liquid level of the coupled tank system benchmark. Because of the nonlinearity of the system and the interactions between two tanks, the behavior of the controller in terms of the performance and disturbance rejection is on the main scene. The Linear Matrix Inequalities (LMI) is used to derive the design procedure. The effectiveness of the proposed approach in the setpoint tracking is highlighted in comparison with the PI plus feedforward controller and the acceptable results are achieved.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuki Matsutani ◽  
Kenji Tahara ◽  
Hitoshi Kino

This study proposes two novel methods for determining the muscular internal force (MIF) based on joint stiffness, using an MIF feedforward controller for the musculoskeletal system. The controller was developed in a previous study, where we found that it could be applied to achieve any desired end-point position without the use of sensors, by providing the MIF as a feedforward input to individual muscles. However, achieving motion with good response and low stiffness using the system, posed a challenge. Furthermore, the controller was subject to an ill-posed problem, where the input could not be uniquely determined. We propose two methods to improve the control performance of this controller. The first method involves determining a MIF that can independently control the response and stiffness at a desired position, and the second method involves the definition of an arbitrary vector that describes the stiffnesses at the initial and desired positions to uniquely determine the MIF balance at each position. The numerical simulation results reported in this study demonstrate the effectiveness of both proposed methods.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manish Yadav ◽  
Hirenkumar G. Patel

Abstract In this article, a unified control scheme is proposed for dead-time compensation and disturbance rejection via feedback and feedforward controller. The objectives of this work are suggested in two folds, first tuning of fractional order feedback controller via delayed Bode’s ideal transfer function instead of conventional Bode’s ideal transfer function with the benefits of dead time compensator and second feedforward controller for disturbance rejection. An existing method is utilized for comparison with the proposed scheme. To examine the efficacy of the proposed method robustness test is also carried out via sensitivity analysis. For quantifiable evaluation of the proposed scheme Integral Absolute Error (IAE) and Integral Square Error (ISE) are utilized. For the usefulness of the proposed scheme, two practical problems are demonstrated in this paper. The limpidity and instinctive appeal of the proposed scheme make it beautiful for industrial applications.


2021 ◽  
Author(s):  
Derrick K. Rollins

When the manipulated variable (MV) has significantly large time delay in changing the control variable (CV), use of the currently measured CV in the feedback error can result in very deficient feedback control (FBC). However, control strategies that use forecast modeling to estimate future CV values and use them in the feedback error have the potential to control as well as a feedback controller with no MV deadtime using the measured value of CV. This work evaluates and compares FBC algorithms using discrete-time forecast modeling when MV has a large deadtime. When a feedforward control (FFC) law results in a physically unrealizable (PU) controller, the common approach is to use approximations to obtain a physically realizable feedforward controller. Using a discrete-time forecast modeling method, this work demonstrates an effective approach for PU FFC. The Smith Predictor is a popular control strategy when CV has measurement deadtime but not MV deadtime. The work demonstrates equivalency of this discrete-time forecast modeling approach to the Smith Predictor FBC approach. Thus, this work demonstrates effectiveness of the discrete-time forecast modeling approach for FBC with MV or DV deadtime and PU FFC.


Sign in / Sign up

Export Citation Format

Share Document