mechanical stretching
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 69)

H-INDEX

39
(FIVE YEARS 6)

Author(s):  
Joanna K. Ledwon ◽  
Elbert E. Vaca ◽  
Chiang C. Huang ◽  
Lauren J. Kelsey ◽  
Jennifer L. McGrath ◽  
...  

Author(s):  
Fengying Gong ◽  
Yuchao Yang ◽  
Liangtao Wen ◽  
Congrong Wang ◽  
Jingjun Li ◽  
...  

Cells and tissues in the human body are subjected to mechanical forces of varying degrees, such as tension or pressure. During tumorigenesis, physical factors, especially mechanical factors, are involved in tumor development. As lung tissue is influenced by movements associated with breathing, it is constantly subjected to cyclical stretching and retraction; therefore, lung cancer cells and lung cancer-associated fibroblasts (CAFs) are constantly exposed to mechanical load. Thus, to better explore the mechanisms involved in lung cancer progression, it is necessary to consider factors involved in cell mechanics, which may provide a more comprehensive analysis of tumorigenesis. The purpose of this review is: 1) to provide an overview of the anatomy and tissue characteristics of the lung and the presence of mechanical stimulation; 2) to summarize the role of mechanical stretching in the progression of lung cancer; and 3) to describe the relationship between mechanical stretching and the lung cancer microenvironment, especially CAFs.


2021 ◽  
pp. 112070002110446
Author(s):  
Yoshi Kawamura ◽  
Tomonori Tetsunaga ◽  
Kazuki Yamada ◽  
Tomoaki Sanki ◽  
Yoshihiro Sato ◽  
...  

Purpose: The acetabular labrum plays an important role in joint lubrication, and damage to this structure leads to osteoarthritis. This study aimed to histologically classify the degree of degeneration of the acetabular labrum and to investigate the changes in gene expression induced by mechanical stretching. Methods: We obtained acetabular labrum cells from patients with hip osteoarthritis during total hip arthroplasty ( n = 25). The labrum was stained with safranin O, and images were histologically evaluated using a new parameter, the red/blue (R/B) value. The samples were divided into the degenerated group (D group: n = 18) and the healthy group (H group: n = 7) in accordance with the Kellgren-Lawrence (KL) grade. The cultured acetabular labral cells were subjected to loaded uniaxial cyclic tensile strain (CTS). After CTS, changes in gene expression were examined in both groups. Results: Spearman’s correlation analysis revealed that the R/B value was significantly correlated with the KL grade and the Krenn score. The expression levels of genes related to cartilage metabolism, osteogenesis and angiogenesis significantly increased after CTS in the H group, while gene expression in the D group showed weaker changes after CTS than that in the H group compared to the nonstretched control group. Conclusions: The degree of labral degeneration could be classified histologically using the R/B value and the KL grade. Mechanical stretching caused changes in gene expression that support the pathological features of labral degeneration.


Author(s):  
Mao-Ze Wang ◽  
Ting-Wei Gu ◽  
Yang Xu ◽  
Lu Yang ◽  
Zhi-Hong Jiang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antsar R. Hlil ◽  
Jyothis Thomas ◽  
Yalina Garcia-Puente ◽  
Jean-Sebastien Boisvert ◽  
Bismarck C. Lima ◽  
...  

AbstractWe report the structural and optical properties of Nd:YAB (NdxY1−x Al3(BO3)4)-nanoparticle-doped PDMS elastomer films for random lasing (RL) applications. Nanoparticles with Nd ratios of x = 0.2, 0.4, 0.6, 0.8, and 1.0 were prepared and then incorporated into the PDMS elastomer to control the optical gain density and scattering center content over a wide range. The morphology and thermal stability of the elastomer composites were studied. A systematic investigation of the lasing wavelength, threshold, and linewidth of the laser was carried out by tailoring the concentration and optical gain of the scattering centers. The minimum threshold and linewidth were found to be 0.13 mJ and 0.8 nm for x = 1 and 0.8. Furthermore, we demonstrated that the RL intensity was easily tuned by controlling the degree of mechanical stretching, with strain reaching up to 300%. A strong, repeatable lasing spectrum over ~ 50 cycles of applied strain was observed, which demonstrates the high reproducibility and robustness of the RL. In consideration for biomedical applications that require long-term RL stability, we studied the intensity fluctuation of the RL emission, and confirmed that it followed Lévy-like statistics. Our work highlights the importance of using rare-earth doped nanoparticles with polymers for RL applications.


2021 ◽  
Vol 897 ◽  
pp. 71-76
Author(s):  
Aliaa Essam ◽  
Ahmed H. El-Shazly ◽  
Hassan Shokry

The application of piezoelectric polyvinylidene fluoride (PVDF) has become of a great interest. Due to its piezoelectric properties, PVDF is used in various applications, namely, microdevices and sensors. Electrospinning was found to be the most suitable and efficient method to synthesis PVDF nanofibers. It is used to obtain PVDF nanofibers without additional mechanical stretching and with high β phase content. For these reasons, it is considered to be an economic technique. In the present paper, the parameters affecting the synthesis of PVDF nanofibers such as solution concentration, flow rate, voltage and Tip to Collector Distance (TCD), have been investigated. The optimum conditions were found to be 18% concentration, 15 cm TCD, 1 mL/h flowrate and 19 kV voltages. The fabricated nanofiber has been characterized using SEM, FTIR, XRD and a conductivity test.


2021 ◽  
Vol 118 (31) ◽  
pp. e2104610118
Author(s):  
Jean-Baptiste Fleury ◽  
Vladimir A. Baulin

Estimated millions of tons of plastic are dumped annually into oceans. Plastic has been produced only for 70 y, but the exponential rise of mass production leads to its widespread proliferation in all environments. As a consequence of their large abundance globally, microplastics are also found in many living organisms including humans. While the health impact of digested microplastics on living organisms is debatable, we reveal a physical mechanism of mechanical stretching of model cell lipid membranes induced by adsorbed micrometer-sized microplastic particles most commonly found in oceans. Combining experimental and theoretical approaches, we demonstrate that microplastic particles adsorbed on lipid membranes considerably increase membrane tension even at low particle concentrations. Each particle adsorbed at the membrane consumes surface area that is proportional to the contact area between particle and the membrane. Although lipid membranes are liquid and able to accommodate mechanical stress, the relaxation time is much slower than the rate of adsorption; thus, the cumulative effect from arriving microplastic particles to the membrane leads to the global reduction of the membrane area and increase of membrane tension. This, in turn, leads to a strong reduction of membrane lifetime. The effect of mechanical stretching of microplastics on living cells membranes was demonstrated by using the aspiration micropipette technique on red blood cells. The described mechanical stretching mechanism on lipid bilayers may provide better understanding of the impact of microplastic particles in living systems.


Sign in / Sign up

Export Citation Format

Share Document