nucleotide sugar
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 64)

H-INDEX

45
(FIVE YEARS 6)

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Maikel Acosta-Zaldivar ◽  
Wanjun Qi ◽  
Ning-Ning Liu ◽  
Joann Diray-Arce ◽  
Louise A. Walker ◽  
...  

The Candida albicans high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin signaling, oxidative stress resistance and virulence of this fungal pathogen. It also contributes to C. albicans’ tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in pho84 mutant compared to wild type cells recovering from phosphate starvation. Non-phosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar,GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-N-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. Our model is that low substrate concentrations of beta-D-glucan- and chitin synthases diminish enzymatic reaction rates and potentiate pharmacologic inhibitors to decrease the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-D-glucans or chitin. Hence inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Shi ◽  
Zilu Wen ◽  
Hongwei Li ◽  
Yanzheng Song

Improving the understanding of the molecular mechanism of tuberculous pleurisy is required to develop diagnosis and new therapy strategies of targeted genes. The purpose of this study is to identify important genes related to tuberculous pleurisy. In this study, the expression profile obtained by sequencing the surgically resected pleural tissue was used to explore the differentially co-expressed genes between tuberculous pleurisy tissue and normal tissue. 29 differentially co-expressed genes were screened by weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis methods. According to the functional annotation analysis of R clusterProfiler software package, these genes are mainly enriched in nucleotide−sugar biosynthetic process (biological process), ficolin−1−rich granule lumen (cell component), and electron transfer activity (molecular function). In addition, in the protein-protein interaction (PPI) network, 20 hub genes of DEGs and WCGNA genes were identified using the CytoHubba plug-in of Cytoscape. In the end, RPL17 was identified as a gene that can be the biomarker of tuberculous pleurisy. At the same time, there are seven genes that may have relationship with the disease (UBA7, NDUFB8, UQCRFS1, JUNB, PSMC4, PHPT1, and MAPK11).


2021 ◽  
Vol 7 (12) ◽  
pp. 1023
Author(s):  
Xingchen Song ◽  
Qijun Zhao ◽  
Aiai Zhou ◽  
Xiaodong Wen ◽  
Ming Li ◽  
...  

The natural product citral has previously been demonstrated to possess antifungal activity against Magnaporthe oryzae. The purpose of this study was to screen and annotate genes that were differentially expressed (DEGs) in M. oryzae after treatment with citral using RNA sequencing (RNA-seq). Thereafter, samples were reprepared for quantitative real-time PCR (RT-qPCR) analysis verification of RNA-seq data. The results showed that 649 DEGs in M. oryzae were significantly affected after treatment with citral (100 μg/mL) for 24 h. Kyoto Encyclopedia of Genes and Genomes (KEGG) and a gene ontology (GO) analysis showed that DEGs were mainly enriched in amino sugar and nucleotide sugar metabolic pathways, including the chitin synthesis pathway and UDP sugar synthesis pathway. The results of the RT-qPCR analysis also showed that the chitin present in M. oryzae might be degraded to chitosan, chitobiose, N-acetyl-D-glucosamine, and β-D-fructose-6-phosphate following treatment with citral. Chitin degradation was indicated by damaged cell-wall integrity. Moreover, the UDP glucose synthesis pathway was involved in glycolysis and gluconeogenesis, providing precursors for the synthesis of polysaccharides. Galactose-1-phosphate uridylyltransferase, which is involved in the regulation of UDP-α-D-galactose and α-D-galactose-1-phosphate, was downregulated. This would result in the inhibition of UDP glucose (UDP-Glc) synthesis, a reduction in cell-wall glucan content, and the destruction of cell-wall integrity.


2021 ◽  
Author(s):  
Edyta Skurska ◽  
Bożena Szulc ◽  
Dorota Maszczak-Seneczko ◽  
Maciej Wiktor ◽  
Wojciech Wiertelak ◽  
...  

Abstract Mutations in the SLC35C1 gene, encoding the Golgi GDP-fucose transporter, cause leukocyte adhesion deficiency II (LADII). Fucosylation improvement in LADII patients treated with fucose suggests the existence of an SLC35C1-independent route of GDP-fucose transport, which still remains a mystery. Here, we developed and characterized a human cell-based model deficient in the SLC35C1 activity. The knockout cells displayed low but detectable levels of fucosylation. Strikingly, the fucosylation defect was almost completely reversed upon treatment with millimolar concentrations of fucose. Even if fucose was supplemented at nanomolar concentrations, it was still incorporated into glycans by the knockout cells. We also found that the SLC35C1-independent transport preferred the salvage pathway over the de novo pathway as a source of GDP-fucose. Our results imply that the Golgi systems of GDP-fucose transport discriminate between the substrate pools obtained from different metabolic pathways, which suggests a functional connection between nucleotide sugar transporters and nucleotide sugar synthetases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenjuan Zhang ◽  
Wenqi Qin ◽  
Huiling Li ◽  
Ai-min Wu

Hemicellulose is entangled with cellulose through hydrogen bonds and meanwhile acts as a bridge for the deposition of lignin monomer in the secondary wall. Therefore, hemicellulose plays a vital role in the utilization of cell wall biomass. Many advances in hemicellulose research have recently been made, and a large number of genes and their functions have been identified and verified. However, due to the diversity and complexity of hemicellulose, the biosynthesis and regulatory mechanisms are yet unknown. In this review, we summarized the types of plant hemicellulose, hemicellulose-specific nucleotide sugar substrates, key transporters, and biosynthesis pathways. This review will contribute to a better understanding of substrate-level regulation of hemicellulose synthesis.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6230
Author(s):  
Laurie Engel ◽  
Juliano Alves ◽  
Jacquelyn Hennek ◽  
Said A. Goueli ◽  
Hicham Zegzouti

Traditional glycosyltransferase (GT) activity assays are not easily configured for rapid detection nor for high throughput screening because they rely on radioactive product isolation, the use of heterogeneous immunoassays or mass spectrometry. In a typical glycosyltransferase biochemical reaction, two products are generated, a glycosylated product and a nucleotide released from the sugar donor substrate. Therefore, an assay that detects the nucleotide could be universal to monitor the activity of diverse glycosyltransferases in vitro. Here we describe three homogeneous and bioluminescent glycosyltransferase activity assays based on UDP, GDP, CMP, and UMP detection. Each of these assays are performed in a one-step detection that relies on converting the nucleotide product to ATP, then to bioluminescence using firefly luciferase. These assays are highly sensitive, robust and resistant to chemical interference. Various applications of these assays are presented, including studies on the specificity of sugar transfer by diverse GTs and the characterization of acceptor substrate-dependent and independent nucleotide-sugar hydrolysis. Furthermore, their utility in screening for specific GT inhibitors and the study of their mode of action are described. We believe that the broad utility of these nucleotide assays will enable the investigation of a large number of GTs and may have a significant impact on diverse areas of Glycobiology research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Grace N. Ijoma ◽  
Rosina Nkuna ◽  
Asheal Mutungwazi ◽  
Charles Rashama ◽  
Tonderayi S. Matambo

AbstractAn estimated 25 million tons of animal manure is produced globally every year, causing considerable impact to the environment. These impacts can be managed through the use of anaerobic digestion (AD) This process achieves waste degradation through enzymatic activity, the efficiency of the AD process is directly related to microorganisms that produce these enzymes. Biomethane potential (BMP) assays remain the standard theoretical framework to pre-determine biogas yield and have been used to determine the feasibility of substrates or their combination for biogas production. However, an integrated approach that combines substrate choice and co-digestion would provide an improvement to the current predictive models. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) addresses the limitations of assays in this regard. In this paper, the biochemical functions of horse, cow, and pig manures are predicted. A total of 135 predicted KEGG Orthologies (KOs) showed amino acids, carbohydrate, energy, lipid, and xenobiotic metabolisms in all the samples. Linear discriminant analysis (LDA) combined with the effect size measurements (LEfSe), showed that fructose, mannose, amino acid and nucleotide sugar, phosphotransferase (PST) as well as starch and sucrose metabolisms were significantly higher in horse manure samples. 36 of the KOs were related to the acidogenesis and/or acetogenesis AD stages. Extended bar plots showed that 11 significant predictions were observed for horse-cow, while 5 were predicted for horse-pig and for cow-pig manures. Based on these predictions, the AD process can be enhanced through co-digestion strategies that takes into account the predicted metabolic contributions of the manure samples. The results supported the BMP calculations for the samples in this study. Biogas yields can be improved if this combined approach is employed in routine analysis before co-digesting different substrates.


2021 ◽  
Author(s):  
Jaya Srivastava ◽  
Petety V. Balaji

Novel functions can emerge in an enzyme family while conserving catalytic mechanism, motif or fold. PLP-dependent enzymes have evolved into seven fold types and catalyse diverse reactions using the same mechanism for the formation of external aldimine. Nucleotide sugar aminotransferases (NSATs) and dehydratases (NSDs) belong to fold type I and mediate the biosynthesis of several monosaccharides. NSATs use diverse substrates but are highly selective to the C3 or C4 carbon to which amine group is transferred. Factors responsible for reaction specificity in NSDs are known but remain unexplored in NSATs. Profile HMMs were able to identify NSATs but could not capture reaction specificity. A search for discriminating features led to the discovery of a sequence motif that is located near the pyranose binding site suggesting their role in imparting reaction specificity. Using a position weight matrix for this motif, we were able to assign reaction specificity to a large number of NSATs. Residues which upon mutation could convert NSD to NSAT have been reported in literature and we deduced that these are not conserved. This suggested the occurrence of non-generic family specific mutations underlying the evolution of dehydratases. Inferences from this analysis set way for future experiments that can shed light on mechanisms of functional diversification in enzymes of fold type I.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Giulia Bandini ◽  
Sebastian Damerow ◽  
Maria Lucia Sempaio Guther ◽  
Hongjie Guo ◽  
Angela Mehlert ◽  
...  

Fucose is a common component of eukaryotic cell-surface glycoconjugates, generally added by Golgi-resident fucosyltransferases. Whereas fucosylated glycoconjugates are rare in kinetoplastids, the biosynthesis of the nucleotide sugar GDP-Fuc has been shown to be essential in Trypanosoma brucei. Here we show that the single identifiable T. brucei fucosyltransferase (TbFUT1) is a GDP-Fuc: β-D-galactose α-1,2-fucosyltransferase with an apparent preference for a Galβ1,3GlcNAcβ1-O-R acceptor motif. Conditional null mutants of TbFUT1 demonstrated that it is essential for both the mammalian-infective bloodstream form and the insect vector-dwelling procyclic form. Unexpectedly, TbFUT1 was localized in the mitochondrion of T. brucei and found to be required for mitochondrial function in bloodstream form trypanosomes. Finally, the TbFUT1 gene was able to complement a Leishmania major mutant lacking the homologous fucosyltransferase gene (Guo et al., 2021). Together these results suggest that kinetoplastids possess an unusual, conserved and essential mitochondrial fucosyltransferase activity that may have therapeutic potential across trypanosomatids.


Sign in / Sign up

Export Citation Format

Share Document