winter rainfall
Recently Published Documents


TOTAL DOCUMENTS

356
(FIVE YEARS 60)

H-INDEX

42
(FIVE YEARS 3)

MAUSAM ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 325-332
Author(s):  
BHUKAN LAL ◽  
B. LAKSHMANASWAMY

ABSTRACT. Statistical analysis of 82-years (1901-1982) record of precipitation from 27 rain-recording stations in Punjab state of lndia has been carried out to assess the climate shift if any in the state. The central part of the study is the trend and spectrum analysis of annual. monsoon and winter rainfall of different stations in the region. It is seen that frequency distribution of 19 rainfall series out of 81 series is normally distributed. Maikov linear type of persistence is observed in some of the rainfall series. Marin-Kendall test indicates the decreasing trend in winter rainfall of all the stations and is found to be significant in case of Amritsar, Taran Taran, Tanda, Ludhiana and Ranike. Low-pass filter reveals that trend is not linear but oscillatory consisting of periods of 10 years or more. It is seen that winter rainfall of most of the stations exhibits the decreasing trend from 1935-40 to 1965-70. It is also revealed by the low-pass filter curves that winter rainfall of all t1le sla1ions remained below average from 1960 till the end of the study period. The spectral analysis indicates a significant cycle of 4.1 to 27 years in some of the stations and Quasi-Biennial Oscillations (QBO) over many stations.  


2021 ◽  
Author(s):  
Sarah Jane Roffe ◽  
Jessica Steinkopf ◽  
Jennifer Fitchett

Abstract Mounting evidence across South Africa’s southwestern winter rainfall zone (WRZ) reflects consistent drying since ~1980 and projected trends suggest this will continue. However, limited evidence exists for the region’s rainfall seasonality changes. To improve our understanding of these WRZ drying trends, especially within the context of Cape Town’s 2015-2017 “Day Zero” drought, it is necessary to explore long-term rainfall seasonality trends. Thus, we use the longest WRZ meteorological record from the South African Astronomical Observatory (SAAO) in Cape Town to investigate rainfall seasonality shifts during 1841-2020. Consistent with recorded poleward migrations of the subtropical high-pressure belt and mid-latitude westerlies, known drivers behind the drought and drying trends, calculated trends demonstrate strengthening of WRZ conditions, primarily from a later start-date trend leading to a shorter wet-season. Long-term drying trends are quantified for the wet- and dry-seasons, however, analysis of trend evolution reveals much variability, reflecting that drying has only persisted since ~1892. Comparative analyses of the first and last 59 years of 1841-2020 reveals a rainfall decline of ~10% across both seasons – highlighting that the extreme “Day Zero” drought was not only driven by wet-season rainfall declines. Results demonstrate that these drying trends were consistently driven by a long-term decline in rain day counts and a more recent decline in average rainfall per rain day. Correspondence between our results and projected rainfall seasonality trends suggests the trends we quantified will likely continue, thus improvements and continuation of existing water conservation and management strategies are imperative for Cape Town.


2021 ◽  
Vol 38 (5) ◽  
pp. 411-415
Author(s):  
Vhuthu Ndou ◽  
Ethel E Phiri ◽  
Frederik H Eksteen ◽  
Petrus J Pieterse

2021 ◽  
pp. 1-54
Author(s):  
Yun-Lan Chen ◽  
Chung-Hsiung Sui ◽  
Chih-Pei Chang ◽  
Kai-Chih Tseng

AbstractThis paper studies the influences of the Madden Julian Oscillation (MJO) on East Asian (EA) winter rainfall using the Singular Value Decomposition (SVD) approach. This method uses two-dimensional instead of the latitudinally-averaged variables in the commonly used Real-time Multivariate MJO (RMM) index. A comparison of the two approaches is made using the same OLR and zonal wind data over 37 boreal winter seasons of December – March. The SVD composite reveals a more conspicuous and coherent variation throughout the MJO cycle, while the RMM composite is more ambiguous. In particular, the SVD analysis identifies the convection anomalies over the Maritime Continent and the subtropical western Pacific (MCWP) as a major cause of enhanced rainfall in EA at RMM phases 8 and 1. This is at least one-eighth cycle earlier than the phases of convection development over Indian Ocean (IO) that were emphasized by previous studies. A linearized global baroclinic model is used to demonstrate the mechanism of MJO forcing on EA rainfall during various phases, with a focus on the MCWP cooling. The result shows that the anomalous MCWP cooling and the resultant low-level anticyclonic flow interact with the East Asian Jet, leading to an overall weakened EA winter monsoon circulation. The associated anomalous overturning circulation, with ascending motion and low-level horizonal moisture convergence in EA, contributes to the enhanced rainfall. This model result supports the interpretation of the SVD analysis, in that the MCWP-cooling induced anomalous meridional circulation is a more direct cause of enhanced EA rainfall than the IO-heating (or the IO-MCWP heating dipole) induced Rossby wave teleconnection.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 804
Author(s):  
Joh R. Henschel

Noy-Meir’s paradigm concerning desert populations being predictably tied to unpredictable productivity pulses was tested by examining abundance trends of 26 species of flightless detritivorous tenebrionid beetles (Coleoptera, Tenebrionidae) in the hyper-arid Namib Desert (MAP = 25 mm). Over 45 years, tenebrionids were continuously pitfall trapped on a gravel plain. Species were categorised according to how their populations increased after 22 effective rainfall events (>11 mm in a week), and declined with decreasing detritus reserves (97.7–0.2 g m−2), while sustained by nonrainfall moisture. Six patterns of population variation were recognised: (a) increases triggered by effective summer rainfalls, tracking detritus over time (five species, 41% abundance); (b) irrupting upon summer rainfalls, crashing a year later (three, 18%); (c) increasing gradually after series of heavy (>40 mm) rainfall years, declining over the next decade (eight, 15%); (d) triggered by winter rainfall, population fluctuating moderately (two, 20%); (e) increasing during dry years, declining during wet (one, 0.4%); (f) erratic range expansions following heavy rain (seven, 5%). All species experienced population bottlenecks during a decade of scant reserves, followed by the community cycling back to its earlier composition after 30 years. By responding selectively to alternative configurations of resources, Namib tenebrionids showed temporal patterns and magnitudes of population fluctuation more diverse than predicted by Noy-Meir’s original model, underpinning high species diversity.


Author(s):  
R. McG. Miller ◽  
C. Krapf ◽  
T. Hoey ◽  
J. Fitchett ◽  
A-K. Nguno ◽  
...  

Abstract The aeolian regime of the 100 km wide, hyperarid Namib Desert has been sporadically punctuated by the deposition of fluvial sediments generated during periods of higher humidity either further inland or well within the desert from Late Oligocene to Late Holocene. Four new Late Cenozoic formations are described from the northern Skeleton Coast and compared with formations further south: the Klein Nadas, Nadas (gravels, sands), Vulture’s Nest (silts) and Uniab Boulder Formations. The Klein Nadas Formation is a trimodal mass-flow fan consisting of thousands of huge, remobilised, end-Carboniferous Dwyka glacial boulders, many >3 m in length, set in an abundant, K-feldspar-rich and sandy matrix of fine gravel. Deluge rains over the smallest catchments deep within the northern Namib were the driving agent for the Klein Nadas Fan, the termination of which, with its contained boulders, rests on the coastal salt pans. These rains also resulted in catastrophic mass flows in several of the other northern Namib rivers. The Uniab Boulder Formation, being one, consists only of huge free-standing boulders. Gravelly fluvial deposition took place during global interglacial and glacial events. The Skeleton Coast Erg and other smaller dune trains blocked the rivers at times. The low-energy, thinly bedded silt deposits of the central and northern Namib are quite distinctive from the sands and gravels of older deposits. Their intermittent deposition is illustrated by bioturbation and pedogenesis of individual layers. Published offshore proxy climatological data (pollens, upwelling, wind, sea surface temperatures) point to expansion of the winter-rainfall regime of the southern Cape into southwestern Angola during strong glacial periods between the Upper Pleistocene and Holocene. In contrast to deposition initiated by short summer thunder storms, we contend that the silt successions are river-end accumulations within which each layer was deposited by runoff from comparatively gentle winter rains that lasted several days.


Phytotaxa ◽  
2021 ◽  
Vol 516 (1) ◽  
pp. 92-100
Author(s):  
ELIZABETH M. MARAIS ◽  
ANSO LE ROUX

Pelargonium hammansbergense and P. roseopetalum are described as new species. Both are deciduous geophytes with turnip-shaped tubers belonging to P. section Hoarea. These two species share spathulate petals with narrow cuneate claws.  However, they differ in leaf shape, flower colour and markings on the petals. Their flower structure corresponds to that of P. aridicola, P. hirtipetalum, P. pubipetalum, P. reflexipetalum and P. tripalmatum. The seven species are compared with regard to the flower and leaf morphology, palynology and chromosome numbers. They all occur in the winter rainfall region along the west coast of South Africa. The two new species described here are illustrated and a key for the identification of the seven species with a P. aridicola flower type is included.


2021 ◽  
Author(s):  
Cesar Mariano Cossani ◽  
Victor Sadras

Rainfed crops rely on two sources of water: stored soil water at sowing and seasonal rain. In strongly seasonal winter-rainfall environments, stored soil water at sowing is minor, and uncertain seasonal rainfall is a source of risk. In south-eastern Australia, under-fertilisation is a common outcome of nitrogen risk management with implications for yield and soil mining. Here we explore the use of carbon isotope composition (δ13C) to capture the effects of water in the prediction of yield and guide nitrogen management. In the sampled environment, crops receive at least 50% of seasonal rainfall by stem elongation, and at least 70% of seasonal rainfall by flowering. In a sample of 1518 plots, yield varied from 0.07 to 9.96 t ha-1 and correlated with δ13C measured with isotope ratio mass spectrometer (IRMS) at flowering; this is consistent with the rainfall pattern and the physiology of the crop featuring a critical period for yield from 300 °Cd before to 100 °Cd after anthesis. In a sample of 135 plots, yield varied from 1.2 to 8.4 t ha-1 and correlated with δ13C measured with IRMS at stem elongation. Yield response to nitrogen, defined as the difference between yield in fertilised crops (50 to 200 kg N ha-1) and unfertilised controls, correlated with δ13C measured with IRMS at stem elongation, except for late-sown crops. Mid-infrared spectroscopy (MIR) returned estimates of δ13C that agreed with δ13C measured with IRMS (calibration: R2 = 0.82, RMSE = 0.53‰, n = 833; validation: R2 = 0.70, RMSE = 0.75‰, n = 364). We conclude that a MIR based, high-throughput, affordable measurement of δ13C could be scaled to guide nitrogen management of wheat in winter-rainfall environments.


Author(s):  
Turid Hillestad Nel ◽  
Christopher Stuart Henshilwood

AbstractIn this paper, we present a case study of the micromammal sequence from Marine Isotope Stage 5 (130,000–71,000 YBP) at Blombos Cave on the southern Cape coast of South Africa. Our analyses of the micromammal assemblage from 100,000 to 76,000 YBP shed light on micromammal taxonomic distributions, local palaeoenvironments, and site formation processes at this renowned Middle Stone Age site. Taphonomic analyses indicate that spotted eagle owls (Bubo africanus) were the main predator species responsible for accumulating the micromammals, but with contributions from barn owls (Tyto alba). In addition, the micromammal bones have been subjected to a range of post-depositional processes, some of which are associated with microbial actions likely resulting from human or animal activities in the cave. We have recorded three species in the archaeological assemblage that do not occur in the Blombos area today. These are the Hottentot golden mole (Amblysomus hottentotus), Duthie’s golden mole (Chlorotalpa duthieae), and Laminate vlei rat (Otomys laminatus). The biodiversity indices based on micromammal species suggest that local vegetation consisted of different habitats that could sustain a diverse small mammal population. During MIS 5c/5b, the diversity of species declined, but there was still a mosaic of vegetation habitats present in the local area. On a larger temporal scale, climate conditions were slightly more humid than at present, and winter rainfall was seemingly greater. The amount of winter rainfall would have been similar to locations currently c. 50–150 km further west of Blombos Cave. However, based on micromammal proxies, there were seemingly no major fluctuations visible in climate or vegetation composition during the entire 24,000-year period. We suggest that the explanation could be multifaceted, two potential factors being predator bias derived from the owls’ preference for generalist micromammal species or an actual reflection of local stable climatic and environmental conditions in the Blombos area.


Sign in / Sign up

Export Citation Format

Share Document