fluorescent tracer
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 44)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Vol 13 ◽  
Author(s):  
Mosi Li ◽  
Akihiro Kitamura ◽  
Joshua Beverley ◽  
Juraj Koudelka ◽  
Jessica Duncombe ◽  
...  

Large vessel disease and carotid stenosis are key mechanisms contributing to vascular cognitive impairment (VCI) and dementia. Our previous work, and that of others, using rodent models, demonstrated that bilateral common carotid stenosis (BCAS) leads to cognitive impairment via gradual deterioration of the neuro-glial-vascular unit and accumulation of amyloid-β (Aβ) protein. Since brain-wide drainage pathways (glymphatic) for waste clearance, including Aβ removal, have been implicated in the pathophysiology of VCI via glial mechanisms, we hypothesized that glymphatic function would be impaired in a BCAS model and exacerbated in the presence of Aβ. Male wild-type and Tg-SwDI (model of microvascular amyloid) mice were subjected to BCAS or sham surgery which led to a reduction in cerebral perfusion and impaired spatial learning acquisition and cognitive flexibility. After 3 months survival, glymphatic function was evaluated by cerebrospinal fluid (CSF) fluorescent tracer influx. We demonstrated that BCAS caused a marked regional reduction of CSF tracer influx in the dorsolateral cortex and CA1-DG molecular layer. In parallel to these changes increased reactive astrogliosis was observed post-BCAS. To further investigate the mechanisms that may lead to these changes, we measured the pulsation of cortical vessels. BCAS impaired vascular pulsation in pial arteries in WT and Tg-SwDI mice. Our findings show that BCAS influences VCI and that this is paralleled by impaired glymphatic drainage and reduced vascular pulsation. We propose that these additional targets need to be considered when treating VCI.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0248545
Author(s):  
Michelle G. Pedler ◽  
J. Mark Petrash ◽  
Prem S. Subramanian

Introduction Cerebrospinal fluid (CSF) outflow has been demonstrated along nasal lymphatics via olfactory nerve projections; flow may be increased by stimulating lymphatic contractility using agents such as noradrenaline and the thromboxane A2 analog U46619. Lymphatics elsewhere in the body show increased contractility upon exposure to the prostaglandin F2alpha analog isoprostane-8-epi-prostaglandin. We investigated the ability of ophthalmic prostaglandin F2alpha analogs to increase CSF outflow when applied to the nasal mucosa by inhalation. Methods Latanoprost (0.1, 0.5, or 1mg/ml), bimatoprost (0.3 or 3mg/ml), travoprost (0.04 or 0.4mg/ml), latanoprostene bunod (0.24 or 2.4mg/ml), tafluprost (0.25 or 2.5mg/ml), or control vehicle (10% DMSO) was administered to awake adult C57B/6 mice by nasal inhalation of 2μl droplets. Multiday dosing (daily for 3 days) of latanoprost also was evaluated. A total of 81 animals were studied including controls. General anesthesia was induced by injection, and fluorescent tracer (AlexaFluor647-labelled ovalbumin) was injected under stereotaxic guidance into the right lateral ventricle. Nasal turbinate tissue was harvested and homogenized after 1 hour for tracer detection by ELISA and fluorometric analysis. Results Inhalation of latanoprost 0.5mg/ml and 1mg/ml led to a 11.5-fold increase in tracer recovery from nasal turbinate tissues compared to controls (3312 pg/ml vs 288 pg/ml, p<0.001 for 0.5mg/ml; 3355 pg/ml vs 288 pg/ml, p<0.001 for 1mg/ml), while latanoprost 0.1 mg/ml enhanced recovery 6-fold (1713 pg/ml vs 288 pg/ml, p<0.01). Tafluprost 0.25mg/ml and bimatoprost 0.3mg/ml showed a modest (1.4x, p<0.05) effect, and the remaining agents showed no significant effect on tracer recovery. After 3 days of daily latanoprost treatment and several hours after the last dose, a persistently increased recovery of tracer was found. Conclusions Prostaglandin F2alpha analogs delivered by nasal inhalation resulted in increased nasal recovery of a CSF fluorescent tracer, implying increased CSF outflow via the nasal lymphatics. The greatest effect, partially dose-dependent, was observed using latanoprost. Further studies are needed to determine the efficacy of these agents in reducing ICP in short and long-term applications.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3600-3600
Author(s):  
Milad Rouhimoghadam ◽  
Anthony D. Pomicter ◽  
Alexandria Van Scoyk ◽  
Greg Poffenberger ◽  
Ivaylo Kirov ◽  
...  

Abstract The oncogenic BCR-ABL1 tyrosine kinase is the driver of chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). Tyrosine kinase inhibitors (TKIs) targeting ABL kinase are generally effective, but subsets of patients treated with single-agent TKIs develop resistance due to mutations in BCR-ABL1 that impair TKI binding. We have previously reported that BCR-ABL1 compound mutants (exhibiting two mutations within the same BCR-ABL molecule) that include the T315I gatekeeper mutation confer a high degree of resistance to all clinical ABL TKIs used as single agents, including ponatinib and the allosteric inhibitor asciminib. However, combining asciminib with ponatinib provides an effective strategy for overcoming compound mutation-based resistance (Eide et al. Cancer Cell 2019). As the clinical utility of ponatinib is limited by cardiovascular toxicity, including arterial occlusive events (AOEs), we decided to search for alternative molecules for use in combination with asciminib. To identify functional ponatinib analogs, we performed Quantum Similarity Modeling (QSM) on the reported crystal structure of T315I mutant ABL1 kinase in complex with nilotinib and asciminib (5MO4) (Wylie et al. Nature 2017) to search for other molecules. Compared to conventional computational modeling, QSM identifies novel classes of structurally distinct compounds that are comparable on a quantum level by precisely defining their interaction with the target. Affinity inferred by close complementarity with the shared ligand-protein surface in the region of the surveyed binding site is mapped, using multiple weak local associations. Our in silico QSM platform combines quantum methods with machine learning to investigate extensive chemical spaces. We screened several million compounds against BCR-ABL1 and identified 51 potential candidates predicted effectively to block T315I mutant BCR-ABL1 when combined with asciminib. To prioritize potent and non-toxic drug combinations for further development against compound mutants, we initially profiled all 51 compounds for their efficacy against Ba/F3 BCR-ABL T315I cells, alone and in combination with asciminib (1 nM). Of 51 compounds, LY3009120, a pan-RAF inhibitor that is currently in phase I clinical development for advanced solid malignancies (Sullivan et al. Mol Cancer Ther 2020), showed strong activity against BCR-ABL T315I when combined with asciminib. These data provided proof of principle for the QSM approach. We next tested the efficacy of all 51 candidates ± asciminib against Ba/F3 cells harboring T315I-inclusive BCR-ABL1 compound mutants, including Y253H/T315I, E255V/T315I, H396R/T315I, G250E/T315I, and T315L as the most resistant mutants. Neither single agent showed any effect. However, LY3009120 strongly inhibited BCR-ABL1 compound mutants when combined with asciminib. No toxicity was observed against Ba/F3 parental cells, confirming that the effects of the combinations are mediated by inhibition of BCR-ABL1. Synergy quantification of the dose-response matrix for the LY3009120/asciminib combination using the Zero Interaction Potency model demonstrated highly synergistic interactions (Synergy score &gt; 10) between the two inhibitors. To directly assess the binding affinity of LY3009120 to the ABL1 kinase domain, we used the cell-based NanoBRET intracellular ABL1 kinase assay on HEK-293 cells expressing luciferase-tagged ABL1. The NanoBRET assay uses energy transfer to quantify the affinity of test compounds by competitive displacement of a cell-permeable fluorescent tracer that is reversibly bound to an ABL1-luciferase fusion protein. We found that LY3009120 competes off the fluorescent tracer at a low micromolar range (EC 50 = 0.75 μM), confirming direct binding of LY3009120 to the kinase domain of ABL1. We hypothesize that the binding of LY3009120 to the ABL1 kinase domain induces a conformational change that re-establishes asciminib binding to the myristoyl binding pocket, allowing for synergy. Studies to quantify the binding affinity of LY3009120 and asciminib to BCR-ABL1 mutants are underway, and data will be presented. In summary, our findings validate QSM as a novel in silico approach to identify TKI combinations. Combining LY3009120 with asciminib may be an effective, low-risk strategy to target BCR-ABL1 compound mutants in patients with clinical TKI resistance. Disclosures Deininger: SPARC, DisperSol, Leukemia & Lymphoma Society: Research Funding; Sangamo: Consultancy, Membership on an entity's Board of Directors or advisory committees; Incyte: Consultancy, Honoraria, Research Funding; Fusion Pharma, Medscape, DisperSol: Consultancy; Novartis: Consultancy, Research Funding; Blueprint Medicines Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other: Part of a Study Management Committee, Research Funding; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other: Part of a Study Management Committee, Research Funding.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1873
Author(s):  
Anna Polomska ◽  
Epameinondas Gousopoulos ◽  
Daniel Fehr ◽  
Andreas Bachmann ◽  
Mathias Bonmarin ◽  
...  

Current diagnostic methods for evaluating the functionality of the lymphatic vascular system usually do not provide quantitative data and suffer from many limitations including high costs, complexity, and the need to perform them in hospital settings. In this work, we present a quantitative, simple outpatient technology named LymphMonitor to quantitatively assess lymphatic function. This method is based on the painless injection of the lymphatic-specific near-infrared fluorescent tracer indocyanine green complexed with human serum albumin, using MicronJet600TM microneedles, and monitoring the disappearance of the fluorescence signal at the injection site over time using a portable detection device named LymphMeter. This technology was investigated in 10 patients with unilateral leg or arm lymphedema. After injection of a tracer solution into each limb, the signal was measured over 3 h and the area under the normalized clearance curve was calculated to quantify the lymphatic function. A statistically significant difference in lymphatic clearance in the healthy versus the lymphedema extremities was found, based on the obtained area under curves of the normalized clearance curves. This study provides the first evidence that the LymphMonitor technology has the potential to diagnose and monitor the lymphatic function in patients.


2021 ◽  
Vol 206 (Supplement 3) ◽  
Author(s):  
Joshua Palka ◽  
Shilpa Argade ◽  
Michael Talcott ◽  
Thomas Rogers ◽  
Richard Dorshow ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3905
Author(s):  
Pawel Burdziakowski ◽  
Piotr Zima ◽  
Pawel Wielgat ◽  
Dominika Kalinowska

Commercial unmanned aerial vehicles continue to gain popularity and their use for collecting image data and recording new phenomena is becoming more frequent. This study presents an effective method for measuring the concentration of fluorescent dyes (fluorescein and Rhodamine WT) for the purpose of providing a mathematical dispersion model. Image data obtained using a typical visible-light camera was used to measure the concentration of the dye floating on water. The reference measurement was taken using a laboratory fluorometer. The article presents the details of three extensive measurement sessions and presents elements of a newly developed method for measuring fluorescent tracer concentrations. The said method provides tracer concentration maps presented on the example of an orthophoto within a 2 × 2 m discrete grid.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tessa Buckle ◽  
Albertus. W. Hensbergen ◽  
Danny M. van Willigen ◽  
Frank Bosse ◽  
Kevin Bauwens ◽  
...  

Abstract Background Surgically induced nerve damage is a common but debilitating side effect in oncological surgery. With the aim to use fluorescence guidance to enable nerve-sparing interventions in future surgery, a fluorescent tracer was developed that specifically targets myelin protein zero (P0). Results Truncated homotypic P0 protein-based peptide sequences were C-terminally functionalized with the far-red cyanine dye Cy5. The lead compound Cy5-P0101–125 was selected after initial solubility, (photo)physical and in vitro evaluation (including P0-blocking experiments). Cy5-P0101–125 (KD = 105 ± 17 nM) allowed in vitro and ex vivo P0-related staining. Furthermore, Cy5-P0101–125  enabled in vivo fluorescence imaging of the Sciatic nerve in mice after local intravenous (i.v.) administration and showed compatibility with a clinical fluorescence laparoscope during evaluation in a porcine model undergoing robot-assisted surgery. Biodistribution data revealed that i.v. administered [111In]In-DTPA-P0101–125 does not enter the central nervous system (CNS). Conclusion P0101–125 has proven to be a potent nerve-specific agent that is able to target P0/myelin under in vitro, ex vivo, and in vivo conditions without posing a threat for CNS-related toxicity.


Sign in / Sign up

Export Citation Format

Share Document