flow cytometry assay
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 60)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Weilong Tang ◽  
Minquan Du ◽  
Shuang Zhang ◽  
Han Jiang

Abstract BackgroundIn peri-implantitis, porphyromonas gingivalis and macrophage play central roles. The aim of this study was to detect the attenuating effect of an anti-diabetic drug sitagliptin on porphyromonas gingivalis virulence and inflammatory response in macrophage on titanium discs. Materials and methodsPorphyromonas gingivalis and macrophage were cultured on titanium discs. Antibacterial and antibiofilm activities of sitagliptin were assessed and the morphology of porphyromonas gingivalis were observed by SEM. Bacterial early adhesion, aggregation, hemagglutination, hemolysis and porphyromonas gingivalis virulence factors mRNA expression were assessed to preliminarily investigate the mechanisms of action. Flow cytometry assay, qRT-PCR and Western Blot were used to assess the anti-inflammatory effect of sitagliptin on porphyromonas gingivalis lipopolysaccharide-stimulated macrophage. ResultsThe present study demonstrated the inhibiting effect of sitagliptin on the growth, biofilm, phenotypic behavior and virulence factors of porphyromonas gingivalis and the protective effect on the porphyromonas gingivalis lipopolysaccharide-induced polarization in macrophage. And we also confirmed the anti-inflammatory effect of sitagliptin on the secretion of inflammation-related factors in macrophage by inhibiting the MAPK and AKT signaling pathways. ConclusionsSitagliptin possesses the attenuating effect on porphyromonas gingivalis virulence and inflammatory response in porphyromonas gingivalis lipopolysaccharide-stimulated macrophage on titanium.


Author(s):  
Shantoshini Dash ◽  
David Sharon ◽  
Alaka Mullick ◽  
Amine Kamen

Plasmid transfection of mammalian cells is the dominant platform used to produce adeno-associated virus (AAV) vectors for clinical and research applications. Low yields from this platform currently make it difficult to supply these activities with adequate material. In an effort to better understand the current limitations of transfection-based manufacturing, this study examines what proportion of cells in a model transfection produce appreciable amounts of assembled AAV capsid. Using conformation-specific antibody staining and flow cytometry we report the surprising result that despite obtaining high transfection efficiencies and nominal vector yields in our model system, only 5-10% of cells appear to produce measurable levels of assembled AAV capsids. This finding implies that considerable increases in vector titer could be realized through increasing the proportion of productive cells. Furthermore, we suggest that the flow cytometry assay used here to quantify productive cells may be a useful metric for future optimization of transfection-based AAV vector manufacturing platforms.


2021 ◽  
pp. 100851
Author(s):  
Guillaume Beaudoin-Bussières ◽  
Jonathan Richard ◽  
Jérémie Prévost ◽  
Guillaume Goyette ◽  
Andrés Finzi

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lei Zou ◽  
Peng Sun ◽  
Lei Zhang

Drug resistance is a major challenge for hepatocellular carcinoma (HCC) treatment in a clinic, which limits the therapeutic effect of the chemotherapeutic drugs, including cisplatin (CDDP), in this disease. Mounting evidence has identified that miRNAs dysfunction is related to the resistance of tumor cells to CDDP, and miR-651-3p has been identified as a tumor inhibitor to suppress the progression of multiple tumors. However, the role of miR-651-3p in HCC remains unclear. In this study, the relative expression of miR-651-3p in HCC tissues and cell lines were measured, and the functions of miR-651-3p were also observed by CCK-8 assay, flow cytometry assay, and Western blot. Moreover, the downstream target of miR-651-3p was predicted and verified via TargetScan and dual-luciferase reporter assay, and its functions were also investigated. The results showed that miR-651-3p was significantly downregulated in HCC tissues and cell lines, and the decreased miR-651-3p was also observed in CDDP-induced cells. miR-651-3p upregulation could effectively inhibit the proliferation and induce the apoptosis of R-HepG2. It was also found that ATG3 was a downstream target of miR-651-3p, and ATG3 was highly upregulated in HCC tissues. Moreover, the upregulated ATG3 could partly reverse the effects of miR-651-3p on R-HepG2. Besides, miR-651-3p involved the autophagy pathway of the HCC cells via targeting ATG3. In conclusion, miR-651-3p could regulate the autophagy to enhance the sensitivity of HepG2 cells to CDDP via targeting ATG3.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Qilong Wang ◽  
Xiaomin Hao ◽  
Gang Xu ◽  
Tiesheng Lv

Colon cancer is a common malignant disease with high morbidity and mortality, and miRNA dysfunction has been confirmed as an important reason for cancer development. Several studies have verified miR-605-3p as a tumor inhibitor while its roles in colon cancer remain uncertain. In this study, the specimen of the patients and the cell lines of colon cancer were used to observe the expression of miR-605-3p, and the CCK-8, Transwell assay, and flow cytometry assay were used to observe the functions of miR-605-3p in colon cancer cells. The downstream factors of miR-605-3p were predicted by TargetScan and then were verified by dual-luciferase reporter assay. Moreover, western blot was used to investigate the effect of miR-605-3p on Wnt/β-catenin signal pathway. The result showed that miR-605-3p was extremely downregulated in the pathological tissues and tumor cells, and miR-605-3p could effectively induce the apoptosis and impede the proliferation and invasion of the tumor cells. It was found that KIF3B was a target of KIF3B; decreased KIF3B could reverse the effects of miR-605-3p on colon cancer. Besides, the inactivated Wnt/β-catenin pathway was also observed in colon cells when miR-605-3p was upregulated, and the phenomenon could be rescued by KIF3B upregulation. In conclusion, miR-605-3p could inactivate the Wnt/β-catenin pathway induced via promoting KIF3B expression.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Guang Li ◽  
Zexing Cheng

Laryngeal carcinoma is a malignant disease with high morbidity and mortality. Several studies have indicated that miRNA dysfunction involves in the development of laryngeal carcinoma. In this study, the connection of miR-339-5p and laryngeal carcinoma was investigated, and qRT-PCR, CCK-8, and flow cytometry assay were used to observe the function of miR-339-5p on laryngeal carcinoma. Besides, the target database, dual-luciferase reporter assay, and western blot were used to explore the regulation mechanism of miR-339-5p on the progression of laryngeal carcinoma. The results showed that miR-339-5p was significantly downregulated in cisplatin-resistant cells of laryngeal carcinoma, and miR-339-5p upregulation could weaken the resistance of laryngeal carcinoma cells on cisplatin. Moreover, miR-339-5p could directly react with 3 ′ -UTR of TAK1, and TAK1 could reverse the effects of miR-339-5p on the progression of autophagy. In conclusion, this study suggests that miR-339-5p can inhibit the autophagy to decrease the cisplatin resistance of laryngeal carcinoma via targeting TAK1.


Microbiology ◽  
2021 ◽  
Vol 167 (7) ◽  
Author(s):  
Samantha A. Hsieh ◽  
David L. Donermeyer ◽  
Stephen C. Horvath ◽  
Paul M. Allen

Capsular polysaccharides (CPSs) protect bacteria from host and environmental factors. Many bacteria can express different CPSs and these CPSs are phase variable. For example, Bacteroides thetaiotaomicron (B. theta) is a prominent member of the human gut microbiome and expresses eight different capsular polysaccharides. Bacteria, including B. theta, have been shown to change their CPSs to adapt to various niches such as immune, bacteriophage, and antibiotic perturbations. However, there are limited tools to study CPSs and fundamental questions regarding phase variance, including if gut bacteria can express more than one capsule at the same time, remain unanswered. To better understand the roles of different CPSs, we generated a B. theta CPS1-specific antibody and a flow cytometry assay to detect CPS expression in individual bacteria in the gut microbiota. Using these novel tools, we report for the first time that bacteria can simultaneously express multiple CPSs. We also observed that nutrients such as glucose and salts had no effect on CPS expression. The ability to express multiple CPSs at the same time may provide bacteria with an adaptive advantage to thrive amid changing host and environmental conditions, especially in the intestine.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jianwei Li ◽  
Su Yan

Hepatocellular carcinoma (HCC) has threatened the health of humans, and some evidence has indicated that miR-466 involves the progressions of some cancers. This study focused on the role of miR-466 in the formation and development of HCC. The expression levels of miR-466 in the tissues of patients and HCC cell lines were measured by qRT-PCR, and CCK-8, transwell assay, and flow cytometry assay were used to observe the functions of miR-466 on the HCC cells. Moreover, the miRNA databases, dual-luciferase reporter assay, and Western blot were used for the investigation of the regulation mechanism of miR-466 on HCC cells. The results showed that miR-466 was significantly downregulated in HCC tissues and cell lines, and inhibited proliferation, invasion, and high apoptosis were found in HCC cells when miR-466 was overexpressed. The results confirmed that FMNL2 was a target of miR-466, and increased FMNL2 could reverse the effects of miR-466 on the phenotype of HCC cells. Besides, it was also found that miR-466 was involved in the regulation of NF-κB and Wnt/β-catenin pathways in HCC cells via targeting FMNL2. In conclusion, the results of this study suggest that miR-466 regulates the activities of NF-κB and Wnt/β-catenin pathways to inhibit the progression of HCC cells via targeting FMNL2.


Sign in / Sign up

Export Citation Format

Share Document