willebrand factor
Recently Published Documents


TOTAL DOCUMENTS

6877
(FIVE YEARS 870)

H-INDEX

142
(FIVE YEARS 12)

2022 ◽  
Vol 23 (2) ◽  
pp. 885
Author(s):  
Magdalena Skalníková ◽  
Kateřina Staňo Kozubík ◽  
Jakub Trizuljak ◽  
Zuzana Vrzalová ◽  
Lenka Radová ◽  
...  

Bernard-Soulier syndrome (BSS) is a rare inherited disorder characterized by unusually large platelets, low platelet count, and prolonged bleeding time. BSS is usually inherited in an autosomal recessive (AR) mode of inheritance due to a deficiency of the GPIb-IX-V complex also known as the von Willebrand factor (VWF) receptor. We investigated a family with macrothrombocytopenia, a mild bleeding tendency, slightly lowered platelet aggregation tests, and suspected autosomal dominant (AD) inheritance. We have detected a heterozygous GP1BA likely pathogenic variant, causing monoallelic BSS. A germline GP1BA gene variant (NM_000173:c.98G > A:p.C33Y), segregating with the macrothrombocytopenia, was detected by whole-exome sequencing. In silico analysis of the protein structure of the novel GPIbα variant revealed a potential structural defect, which could impact proper protein folding and subsequent binding to VWF. Flow cytometry, immunoblot, and electron microscopy demonstrated further differences between p.C33Y GP1BA carriers and healthy controls. Here, we provide a detailed insight into its clinical presentation and phenotype. Moreover, the here described case first presents an mBSS patient with two previous ischemic strokes.


2022 ◽  
Author(s):  
Roxana Iacob ◽  
Klaus Bonazza ◽  
Nathan Hudson ◽  
Jing Li ◽  
Chafen Lu ◽  
...  

Hemostasis in the arterial circulation is mediated by binding of the A1 domain of the ultralong protein von Willebrand factor to GPIbα on platelets to form a platelet plug. A1 is activated by tensile force on VWF concatemers imparted by hydrodynamic drag force. The A1 core is protected from force-induced unfolding by a long-range disulfide that links cysteines near its N and C-termini. The O-glycosylated linkers between A1 and its neighboring domains, which transmit tensile force to A1, are reported to regulate A1 activation for binding to GPIb, but the mechanism is controversial and incompletely defined. Here, we study how these linkers, and their polypeptide and O-glycan moieties, regulate A1 affinity by measuring affinity, kinetics, thermodynamics, hydrogen deuterium exchange (HDX), and unfolding by temperature and urea. The N-linker lowers A1 affinity 40-fold with a stronger contribution from its O-glycan than polypeptide moiety. The N-linker also decreases HDX in specific regions of A1 and increases thermal stability and the energy gap between its native state and an intermediate state, which is observed in urea-induced unfolding. The C-linker also decreases affinity of A1 for GPIbα, but in contrast to the N-linker, has no significant effect on HDX or A1 stability. Among different models for A1 activation, our data are consistent with the model that the intermediate state has high affinity for GPIbα, which is induced by tensile force physiologically and regulated allosterically by the N-linker.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Allan M. Klompas ◽  
Noud van Helmond ◽  
Justin E. Juskewitch ◽  
Rajiv K. Pruthi ◽  
Matthew A. Sexton ◽  
...  

AbstractConvalescent plasma is used to treat COVID-19. There are theoretical concerns about the impact of pro-coagulant factors in convalescent plasma on the coagulation cascade particularly among patients with severe COVID-19. The aim of this study was to evaluate the coagulation profile of COVID-19 convalescent plasma. Clotting times and coagulation factor assays were compared between fresh frozen plasma, COVID-19 convalescent plasma, and pathogen-reduced COVID-19 convalescent plasma. Measurements included prothrombin time, activated partial thromboplastin time, thrombin time, fibrinogen, D-dimer, von Willebrand factor activity, von Willebrand factor antigen, coagulation factors II, V, VII–XII, protein S activity, protein C antigen, and alpha-2 plasmin inhibitor. Clotting times and coagulation factor assays were not different between COVID-19 convalescent plasma and fresh frozen plasma, except for protein C antigen. When compared to fresh frozen plasma and regular convalescent plasma, pathogen reduction treatment increased activated partial thromboplastin time and thrombin time, while reducing fibrinogen, coagulation factor II, V, VIII, IX, X, XI, XII, protein S activity, and alpha-2 plasmin inhibitor. The coagulation profiles of human COVID-19 convalescent plasma and standard fresh frozen plasma are not different. Pathogen reduced COVID-19 convalescent plasma is associated with reduction of coagulation factors and a slight prolongation of coagulation times, as anticipated. A key limitation of the study is that the COVID-19 disease course of the convalesced donors was not characterized.


Author(s):  
Orla Rawley ◽  
Laura L. Swystun ◽  
Christine Brown ◽  
Kate Nesbitt ◽  
Margaret L Rand ◽  
...  

Von Willebrand factor (VWF) is an extremely cysteine-rich multimeric protein that is essential for maintaining normal hemostasis. The cysteine residues of VWF monomers form intra- and inter-molecular disulfide bonds that regulate its structural conformation, multimer distribution and ultimately its hemostatic activity. In this study we investigated and characterized the molecular and pathogenic mechanisms through which a novel cysteine variant p.(Cys1084Tyr) causes an unusual, mixed phenotype form of von Willebrand disease (VWD). Phenotypic data including bleeding scores, laboratory values, VWF multimer distribution and desmopressin response kinetics were investigated in 5 members (2 parents and 3 daughters) of a consanguineous family. VWF synthesis and secretion were also assessed in a heterologous expression system and in a transient transgenic mouse model. Heterozygosity for p.(Cys1084Tyr) was associated with variable expressivity of qualitative VWF defects. Heterozygous individuals had reduced VWF:GPIbM (<0.40IU/mL) and VWF:CB (<0.35IU/mL) as well as relative reductions in high-molecular weight multimers, consistent with type 2A VWD. In addition to these qualitative defects, homozygous individuals also displayed reduced FVIII:C/VWF:Ag leading to very low FVIII levels (0.03-0.1IU/mL) as well as reduced VWF:Ag (<0.40IU/mL) and VWF:GPIbM (<0.30IU/ml). Accelerated VWF clearance and impaired VWF secretion contributed to the fully expressed homozygous phenotype with impaired secretion arising due to disordered disulfide connectivity.


2022 ◽  
Vol 8 ◽  
Author(s):  
Bipin P. Kulkarni ◽  
Kirti Ghargi ◽  
Chandrakala Shanmukhaiah ◽  
Shrimati D. Shetty

Introduction: Type 3 Von Willebrand Disease (VWD) is the least common but the most severe form of a disease, with a prevalence of about 0. 5 to 1 per million in Western countries. The prevalence of type 3 VWD in the developing countries, with a high degree of consanguinity, is about 6 per million. Moreover, due to underdiagnosis of the milder cases, the prevalence of type 3 VWD is about 50% of the cases. Rarely, some patients develop the Von Willebrand Factor (VWF) inhibitors, which may subsequently develop severe anaphylactic reactions on further exposure to the VWF containing factor replacement therapy. The prevalence of inhibitor development in patients with type 3 VWD has been shown to be in the range of 5.8 to 9.5%. In the absence of a gold standard assay for the quantitation of VWF inhibitors, a correct diagnosis and management of these patients are often challenging.Objectives: The objective of this study is to standardize the Bethesda assay for the VWF inhibitors and to estimate the VWD inhibitor titer in two cases of congenital type 3 VWD, which developed the VWF inhibitors.Results and Conclusions: We could successfully standardize the Bethesda assay for the quantitation of VWF inhibitors in two patients with congenital type 3 VWD with inhibitors.


2022 ◽  
Vol 8 ◽  
Author(s):  
Kiruphagaran Thangaraju ◽  
Upendra Katneni ◽  
Imo J. Akpan ◽  
Kenichi Tanaka ◽  
Tiffany Thomas ◽  
...  

Aging and obesity independently contribute toward an endothelial dysfunction that results in an imbalanced VWF to ADAMTS13 ratio. In addition, plasma thrombin and plasmin generation are elevated and reduced, respectively, with increasing age and also with increasing body mass index (BMI). The severity risk of Corona Virus Disease 2019 (COVID-19) increases in adults older than 65 and in individuals with certain pre-existing health conditions, including obesity (>30 kg/m2). The present cross-sectional study focused on an analysis of the VWF/ADAMTS13 axis, including measurements of von Willebrand factor (VWF) antigen (VWF:AG), VWF collagen binding activity (VWF:CBA), Factor VIII antigen, ADAMTS13 antigen, and ADAMTS13 activity, in addition to thrombin and plasmin generation potential, in a demographically diverse population of COVID-19 negative (−) (n = 288) and COVID-19 positive (+) (n = 543) patient plasmas collected at the time of hospital presentation. Data were analyzed as a whole, and then after dividing patients by age (<65 and ≥65) and independently by BMI [<18.5, 18.5–24.9, 25–29.9, >30 (kg/m2)]. These analyses suggest that VWF parameters (i.e., the VWF/ADAMTS13 activity ratio) and thrombin and plasmin generation differed in COVID-19 (+), as compared to COVID-19 (−) patient plasma. Further, age (≥65) more than BMI contributed to aberrant plasma indicators of endothelial coagulopathy. Based on these findings, evaluating both the VWF/ADAMTS13 axis, along with thrombin and plasmin generation, could provide insight into the extent of endothelial dysfunction as well as the plasmatic imbalance in coagulation and fibrinolysis potential, particularly for at-risk patient populations.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Bailing Chen ◽  
Yulong Li ◽  
Meilin Tian ◽  
Hao Su ◽  
Wei Sun ◽  
...  

AbstractR. esculentum is a popular seafood in Asian countries and an economic marine fishery resource in China. However, the genetic linkage map and growth-related molecular markers are still lacking, hindering marker assisted selection (MAS) for genetic improvement of R. esculentum. Therefore, we firstly used 2b-restriction site-associated DNA (2b-RAD) method to sequence 152 R. esculentum specimens and obtained 9100 single nucleotide polymorphism (SNP) markers. A 1456.34 cM linkage map was constructed using 2508 SNP markers with an average interval of 0.58 cM. Then, six quantitative trait loci (QTLs) for umbrella diameter and body weight were detected by QTL analysis based on the new linkage map. The six QTLs are located on four linkage groups (LGs), LG4, LG13, LG14 and LG15, explaining 9.4% to 13.4% of the phenotypic variation. Finally, 27 candidate genes in QTLs regions of LG 14 and 15 were found associated with growth and one gene named RE13670 (sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein 1-like) may play an important role in controlling the growth of R. esculentum. This study provides valuable information for investigating the growth mechanism and MAS breeding in R. esculentum.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Oanh L. Pham ◽  
Samuel E. Feher ◽  
Quoc T. Nguyen ◽  
Dimitrios V. Papavassiliou

AbstractThe configuration of proteins is critical for their biochemical behavior. Mechanical stresses that act on them can affect their behavior leading to the development of decease. The von Willebrand factor (vWF) protein circulating with the blood loses its efficacy when it undergoes non-physiological hemodynamic stresses. While often overlooked, extensional stresses can affect the structure of vWF at much lower stress levels than shear stresses. The statistical distribution of extensional stress as it applies on models of the vWF molecule within turbulent flow was examined here. The stress on the molecules of the protein was calculated with computations that utilized a Lagrangian approach for the determination of the molecule trajectories in the flow filed. The history of the stresses on the proteins was also calculated. Two different flow fields were considered as models of typical flows in cardiovascular mechanical devises, one was a Poiseuille flow and the other was a Poiseuille–Couette flow field. The data showed that the distribution of stresses is important for the design of blood flow devices because the average stress can be below the critical value for protein damage, but tails of the distribution can be outside the critical stress regime.


2022 ◽  
Vol 226 (1) ◽  
pp. S346-S347
Author(s):  
Sharon Davidesko ◽  
Oleg Pikovsky ◽  
Kayed Al-Athamen ◽  
Rinat Hackmon ◽  
Offer Erez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document