brain oxygenation
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 49)

H-INDEX

31
(FIVE YEARS 4)

Author(s):  
Rahul Jitendra Vakharia ◽  
Ishaan Jani ◽  
Shashibala Yadav ◽  
Thomas Kurian

Abstract Background Due to long working hours wearing an N95 mask and PPE kit during the COVID-19 pandemic, the healthcare workers (HCWs) complained of headaches, confusion, and exhaustion. This study was therefore performed to study the changes in brain oxygenation. Aim To compare brain oxygenation in health care workers wearing an N95 mask with a PPE kit versus a three-ply mask during an intensive care setting for 6 hours. Materials and Methods Thirty clinicians and 30 paramedical staff participated in the study. The control (three-ply mask) and subject (N95 mask with PPE) groups included 15 clinicians and 15 paramedical staff. A comparative analysis of brain oxygenation using a 3T magnetic resonance imaging (MRI) machine was performed in these two groups at the beginning and the end of their work shift. Results The mean age of the individuals in the control and subject groups was 30.8 and 30.13 years, respectively. The median value of brain oxygenation in the control and subject groups in the pre-shift was between 33 and 31 and post-shift was 30 and 24. The drop in brain oxygenation in subjects was more than the controls (p = 0.004) in the post-shift assessments. The cerebral blood flow (CBF) in the bilateral middle cerebral artery (MCA) using arterial spin labeling (ASL) showed a rise in CBF in both groups post-shift as compared with the pre-shift values. The median values of the right and left MCA in the control and subject groups pre-shift were 82.75/83.45 and 89.75/106.65. The post-shift median values of both MCAs of the control and subject groups were 115.65/115.55 and 109.60/119.49. Conclusion MRI-BOLD imaging revealed a significant drop in brain oxygenation in the subject group as compared with the control group. Multiphasic-ASL showed a compensatory rise in CBF in both groups.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Verena Rass ◽  
Elisa Gouvea Bogossian ◽  
Bogdan-Andrei Ianosi ◽  
Lorenzo Peluso ◽  
Mario Kofler ◽  
...  

Abstract Background Fluid management in patients after subarachnoid hemorrhage (SAH) aims at the optimization of cerebral blood flow and brain oxygenation. In this study, we investigated the effects of hemodynamic management on brain oxygenation by integrating advanced hemodynamic and invasive neuromonitoring. Methods This observational cohort bi-center study included data of consecutive poor-grade SAH patients who underwent pulse contour cardiac output (PiCCO) monitoring and invasive neuromonitoring. Fluid management was guided by the transpulmonary thermodilution system and aimed at euvolemia (cardiac index, CI ≥ 3.0 L/min/m2; global end-diastolic index, GEDI 680–800 mL/m2; stroke volume variation, SVV < 10%). Patients were managed using a brain tissue oxygenation (PbtO2) targeted protocol to prevent brain tissue hypoxia (BTH, PbtO2 < 20 mmHg). To assess the association between CI and PbtO2 and the effect of fluid challenges on CI and PbtO2, we used generalized estimating equations to account for repeated measurements. Results Among a total of 60 included patients (median age 56 [IQRs 47–65] years), BTH occurred in 23% of  the monitoring time during the first 10 days since admission. Overall, mean CI was within normal ranges (ranging from 3.1 ± 1.3 on day 0 to 4.1 ± 1.1 L/min/m2 on day 4). Higher CI levels were associated with higher PbtO2 levels (Wald = 14.2; p < 0.001). Neither daily fluid input nor fluid balance was associated with absolute PbtO2 levels (p = 0.94 and p = 0.85, respectively) or the occurrence of BTH (p = 0.68 and p = 0.71, respectively). PbtO2 levels were not significantly different in preload dependent patients compared to episodes of euvolemia. PbtO2 increased as a response to fluid boluses only if BTH was present at baseline (from 13 ± 6 to 16 ± 11 mmHg, OR = 13.3 [95% CI 2.6–67.4], p = 0.002), but not when all boluses were considered (p = 0.154). Conclusions In this study a moderate association between increased cardiac output and brain oxygenation was observed. Fluid challenges may improve PbtO2 only in the presence of baseline BTH. Individualized hemodynamic management requires advanced cardiac and brain monitoring in critically ill SAH patients.


2021 ◽  
Vol 3 ◽  
Author(s):  
Paolo Tiberini ◽  
Giuseppe D'Antona ◽  
Antonio Cicchella

Purpose: Investigate the feasibility of a non-invasive method to evaluate the physical and cognitive repercussions of long-lasting post-concussion effects in professional combat sports athletes. To help athletes return to professional combat, there is a need for unbiased objective tools and techniques used as a prognostic method of recovery after Sport Related Concussion (SRC).Methods: Six mild Traumatic Brain Injury (mTBI) athletes, age 20 ÷ 43 yr (1 female, 5 males) and 7 not concussed (NC) participants (amateur), age 24 ÷ 38 yr (3 females, 4 males), were tested Inspired/expired gas concentration, Cerebral changes in oxygenated hemoglobin (Δ[HbO2]) and deoxygenated hemoglobin (Δ[HHb]) were measured using near infrared spectroscopy (NIRS) with a 3-step protocol: rest before maximal oxygen uptake (VO2max) test, hypercapnia, and recovery after VO2max test. The brain oxygenation and respiratory parameters of both sample sets were calculated using a non-parametric test (Mann-Whitney U test). Aerobic fitness outcome was quantified through mean average using the Bruce test. Participants performed Fitt's test using a laptop and analysis of medio-lateral and anterior-posterior range of oscillation was carried out via a force platform Romberg test.Results: mTBI group showed statistically significant differences in saturated hemoglobin Δ[HbO2] (p &lt; 0.001) during rest and recovery phase after maximal incremental exercise, in medio-lateral sway eyes open (p = 0.008, NC 25.35 ± 4.11 mm and mTBI 17.65 ± 4.79 mm). VO2max revealed no significant differences between the two groups: NC 47.47 ± 4.91 mTBI 49.58 ± 5.19 ml/kg/min−1. The 2 groups didn't differ for maximum power output (NC 220 ± 34, mTBI 255 ± 50 W). End-tidal fractional concentration of O2 (FetO2 NC15.20 ± 0.41, mTBI 16.09 ± 0.68) throughout hypercapnia, saturated blood hemoglobin (Δ[HbO2]) revealed significant differences with the mTBI group. No differences emerged from Fitt's test.Conclusions: It emerges that NIRS is able to reveal differences in long time outcomes of mTBI. The medio-lateral variations cannot be considered as a marker of long-term damage in athletes specifically trained for balance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matyas Kovacs ◽  
Lorenzo Peluso ◽  
Hassane Njimi ◽  
Olivier De Witte ◽  
Elisa Gouvêa Bogossian ◽  
...  

Background: Although increasing cerebral perfusion pressure (CPP) is commonly accepted to improve brain tissue oxygen pressure (PbtO2), it remains unclear whether recommended CPP targets (i. e., &gt;60 mmHg) would result in adequate brain oxygenation in brain injured patients. The aim of this study was to identify the target of CPP associated with normal brain oxygenation.Methods: Prospectively collected data including patients suffering from acute brain injury and monitored with PbtO2, in whom daily CPP challenge using vasopressors was performed. Initial CPP target was &gt;60 mmHg; norepinephrine infusion was modified to have an increase in CPP of at least 10 mmHg at two different steps above the baseline values. Whenever possible, the same CPP challenge was performed for the following days, for a maximum of 5 days. CPP “responders” were patients with a relative increase in PbtO2 from baseline values &gt; 20%.Results: A total of 53 patients were included. On the first day of assessment, CPP was progressively increased from 73 (70–76) to 83 (80–86), and 92 (90–96) mmHg, which resulted into a significant PbtO2 increase [from 20 (17–23) mmHg to 22 (20–24) mmHg and 24 (22–26) mmHg, respectively; p &lt; 0.001]. Median CPP value corresponding to PbtO2 values &gt; 20 mmHg was 79 (74–87) mmHg, with 2 (4%) patients who never achieved such target. Similar results of CPP targets were observed the following days. A total of 25 (47%) were PbtO2 responders during the CPP challenge on day 1, in particular if low PbtO2 was observed at baseline.Conclusions: PbtO2 monitoring can be an effective way to individualize CPP values to avoid tissue hypoxia. Low PbtO2 values at baseline can identify the responders to the CPP challenge.


2021 ◽  
Vol 15 ◽  
Author(s):  
Nounagnon Frutueux Agbangla ◽  
Pauline Maillot ◽  
Damien Vitiello

The cardiorespiratory hypothesis (CH) is one of the hypotheses used by researchers to explain the relationship between cardiorespiratory fitness and cognitive performance during executive functions. Despite the indubitable beneficial effect of training on brain blood flow and function that may explain the link between physical fitness and cognition and the recognition of the near-infrared spectroscopy (NIRS) as a reliable tool for measuring brain oxygenation, few studies investigated the CH with NIRS. It is still not well understood whether an increase in brain flow by training is translated into an increase in cerebral oxygenation. Thus, the objective of this mini-review was to summarize main results of studies that investigated the CH using the NIRS and to propose future research directions.


Author(s):  
Laetitia Burnol ◽  
Jean-Francois Payen ◽  
Gilles Francony ◽  
Kristina Skaare ◽  
Romain Manet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document