gps telemetry
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Caleb M. Bryce ◽  
Carolyn E. Dunford ◽  
Anthony M. Pagano ◽  
Yiwei Wang ◽  
Bridget L. Borg ◽  
...  

Abstract Background Environmental conditions can influence animal movements, determining when and how much animals move. Yet few studies have quantified how abiotic environmental factors (e.g., ambient temperature, snow depth, precipitation) may affect the activity patterns and metabolic demands of wide-ranging large predators. We demonstrate the utility of accelerometers in combination with more traditional GPS telemetry to measure energy expenditure, ranging patterns, and movement ecology of 5 gray wolves (Canis lupus), a wide-ranging social carnivore, from spring through autumn 2015 in interior Alaska, USA. Results Wolves exhibited substantial variability in home range size (range 500–8300 km2) that was not correlated with daily energy expenditure. Mean daily energy expenditure and travel distance were 22 MJ and 18 km day−1, respectively. Wolves spent 20% and 17% more energy during the summer pup rearing and autumn recruitment seasons than the spring breeding season, respectively, regardless of pack reproductive status. Wolves were predominantly crepuscular but during the night spent 2.4 × more time engaged in high energy activities (such as running) during the pup rearing season than the breeding season. Conclusion Integrating accelerometry with GPS telemetry can reveal detailed insights into the activity and energetics of wide-ranging predators. Heavy precipitation, deep snow, and high ambient temperatures each reduced wolf mobility, suggesting that abiotic conditions can impact wolf movement decisions. Identifying such patterns is an important step toward evaluating the influence of environmental factors on the space use and energy allocation in carnivores with ecosystem-wide cascading effects, particularly under changing climatic conditions.


2021 ◽  
Vol 13 (19) ◽  
pp. 4001
Author(s):  
Jason V. Lombardi ◽  
Humberto L. Perotto-Baldivieso ◽  
Maksim Sergeyev ◽  
Amanda M. Veals ◽  
Landon Schofield ◽  
...  

Few ecological studies have explored landscape suitability using the gradient concept of landscape structure for wildlife species. Identification of conditions influencing the landscape ecology of endangered species allows for development of more robust recovery strategies. Our objectives were to (i) identify the range of landscape metrics (i.e., mean patch area; patch and edge densities; percent land cover; shape, aggregation, and largest patch indices) associated with woody vegetation used by ocelots (Leopardus pardalis), and (ii) quantify the potential distribution of suitable woody cover for ocelots across southern Texas. We used the gradient concept of landscape structure and the theory of slack combined with GPS telemetry data from 10 ocelots. Spatial distribution of high suitable woody cover is comprised of large patches, with low shape-index values (1.07–2.25), patch (27.21–72.50 patches/100 ha), and edge (0–191.50 m/ha) densities. High suitability landscape structure for ocelots occurs in 45.27% of woody cover in southern Texas. Our study demonstrates a new approach for measuring landscape suitability for ocelots in southern Texas. The range of landscape values identified that there are more large woody patches containing the spatial structure used by ocelots than previously suspected, which will aid in evaluating recovery and road planning efforts.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ruben Portas ◽  
Ortwin H. K. Aschenborn ◽  
Joerg Melzheimer ◽  
Manie Le Roux ◽  
Kenneth Heinrich Uiseb ◽  
...  

Anthrax is a bacterial disease caused by Bacillus anthracis that affects wildlife, livestock and also humans in different parts of the world. It is endemic in some parts of Africa, including Namibia, with species differing in their susceptibility to the disease. Carnivores are typically less susceptible to anthrax than herbivores. Most carnivore species survive infection and have high seroprevalence against anthrax, whereas most herbivore species have low seroprevalence and typically die quickly when infected. Several reports have shown that cheetahs, unlike most other large carnivores, are susceptible to anthrax leading to a sudden death. This finding was suggested to be linked to the low genetic variability of cheetahs which might reduce an adequate immune response and thus explain such a high susceptibility to the disease. Here, we report an incidence of three free-ranging cheetahs that died within 24 h after feeding on a mountain zebra that tested positive for anthrax in the Namib Desert. We were able to reconstruct this incidence with the data recorded in the GPS (Global Positioning System) collar worn by one of the cheetahs and retrieved in the field. It is very likely that the cheetahs died from anthrax, although Bacillus anthracis could not be isolated from tissue and soil samples by bacterial culturing. The mountain zebra is the first described case of a wild animal that tested positive for anthrax in this arid area in southwestern of Namibia. We discuss the negative laboratory results of the cheetahs in the light of new insights of their immune system and its potential to mount a response against this bacteria.


2021 ◽  
Vol 40 ◽  
Author(s):  
Clément Brun ◽  
Marie-Anne Blanchet ◽  
Rolf A. Ims ◽  
Jon Aars

Philopatry influences animal distribution and can lead to a kinship-based spatial structure, where proximity and relatedness are tightly linked. In the Barents Sea region, polar bears (Ursus maritimus) of the coastal ecotype remain year-round within the Svalbard archipelago. This coastal strategy is thought to be stable across years; however, little is known about the intra-individual variability in site fidelity or the influence of kinship on space use. Using high-resolution GPS telemetry, we looked at multi-year philopatry among 17 coastal female polar bears over eight years (2011–19) and investigated whether it is linked to the females’ degree of kinship. Individuals showed a stable space use in both consecutive and non-consecutive years. Yearly individual home ranges (HRs) overlapped, on average, by 44% (range: 9–96%), and their centroids were, on average, 15 km (range: 2–63 km) apart. The space use of related females revealed a year-round strong female kin structure. Annual HRs of related females overlapped, on average, by 24% (range: 0–66%), and their centroids were, on average, 18 km (range: 2–52 km) apart. In contrast, non-related females had much larger distances between centroids (average: 160 km, range: 59–283 km). Additionally, females showed a great site fidelity in all seasons: individual seasonal HR centroids were, on average, less than 30 km (range: 1.8–172 km) apart. Bears in this region seem to exhibit a stronger site fidelity than those reported from other parts of the species range. These findings also highlight the importance of maternal learning in space use.


2021 ◽  
Author(s):  
Ninon F. V. Meyer ◽  
John‐Paul King ◽  
Michael Mahony ◽  
John Clulow ◽  
Chad Beranek ◽  
...  
Keyword(s):  

2021 ◽  
Vol 03 (1) ◽  
pp. 001-008
Author(s):  
Daniel Rodríguez ◽  
Adriana Reyes ◽  
Andrea del Pilar Tarquino-Carbonel ◽  
Héctor Restrepo ◽  
Nicolás Reyes-Amaya

2020 ◽  
Vol 55 (1) ◽  
Author(s):  
David Campion ◽  
Iker Pardo ◽  
Miguel Elósegui ◽  
Diego Villanua
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nishant Kumar ◽  
Urvi Gupta ◽  
Yadvendradev V. Jhala ◽  
Qamar Qureshi ◽  
Andrew G. Gosler ◽  
...  

Abstract Remote technologies are producing leapfrog advances in identifying the routes and connectivity of migratory species, which are still unknown for hundreds of taxa, especially Asian ones. Here, we used GPS-telemetry to uncover the migration routes and breeding areas of the massive population of migratory Black-eared kites wintering around the megacity of Delhi-India, which hosts the largest raptor concentration of the world. Kites migrated for 3300–4800 km along a narrow corridor, crossing the Himalayas at extremely high elevations (up to > 6500 m a.s.l.) by the K2 of the Karakoram Range and travelled long periods at elevations above 3500 m. They then crossed/circumvented the Taklamakan Desert and Tian Shan Range to reach their unknown breeding quarters at the intersection between Kazakhstan, Russia, China and Mongolia. Route configuration seemed to be shaped by dominant wind support and barrier avoidance. Wintering ranges were smaller than breeding ranges and concentrated around Delhi, likely in response to massive human food-subsidies. Our results illustrate that high-elevation crossings by soaring migrants may be more common than previously appreciated and suggest the delineation of a hitherto poorly-appreciated “Central Asian Flyway”, which must funnel hundreds of thousands of migrants from central Asia into the Indian subcontinent via multiple modes of the Himalayan crossing.


Sign in / Sign up

Export Citation Format

Share Document