temperature responses
Recently Published Documents


TOTAL DOCUMENTS

704
(FIVE YEARS 133)

H-INDEX

54
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Anton M. Potapov ◽  
Carlos A. Guerra ◽  
Johan van den Hoogen ◽  
Anatoly Babenko ◽  
Bruno C. Bellini ◽  
...  

Soil life supports the functioning and biodiversity of terrestrial ecosystems1,2. Springtails (Collembola) are among the most abundant soil animals regulating soil fertility and flow of energy through above- and belowground food webs3-5. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset collected from 2,470 sites, we estimate total soil springtail biomass at 29 Mt carbon (threefold higher than wild terrestrial vertebrates6) and record peak densities up to 2 million individuals per m2 in the Arctic. Despite a 20-fold biomass difference between tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the increase in temperature. Neither springtail density nor community metabolism were predicted by local species richness, which was highest in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation7,8, and resource limitation7,9,10 in soil communities. Contrasting temperature responses of biomass, diversity and activity of springtail communities suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting major soil functions.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2665
Author(s):  
Julio Garighan ◽  
Etienne Dvorak ◽  
Joan Estevan ◽  
Karine Loridon ◽  
Bruno Huettel ◽  
...  

Winter dormancy is an adaptative mechanism that temperate and boreal trees have developed to protect their meristems against low temperatures. In apple trees (Malus domestica), cold temperatures induce bud dormancy at the end of summer/beginning of the fall. Apple buds stay dormant during winter until they are exposed to a period of cold, after which they can resume growth (budbreak) and initiate flowering in response to warmer temperatures in spring. It is well-known that small RNAs modulate temperature responses in many plant species, but however, how small RNAs are involved in genetic networks of temperature-mediated dormancy control in fruit tree species remains unclear. Here, we have made use of a recently developed ARGONAUTE (AGO)-purification technique to isolate small RNAs from apple buds. A small RNA-seq experiment resulted in the identification of 17 micro RNAs (miRNAs) that change their pattern of expression in apple buds during dormancy. Furthermore, the functional analysis of their predicted target genes suggests a main role of the 17 miRNAs in phenylpropanoid biosynthesis, gene regulation, plant development and growth, and response to stimulus. Finally, we studied the conservation of the Arabidopsis thaliana regulatory miR159-MYB module in apple in the context of the plant hormone abscisic acid homeostasis.


Author(s):  
Linyi Wei ◽  
Yong Wang ◽  
Shu Liu ◽  
Guang J. Zhang ◽  
Bin Wang

Abstract Surface temperature responses to aerosol and cloud radiative perturbations are complicated by the underlying land surface processes. To disentangle this complexity, this study investigates the role of land surfaces in the radiative effects of aerosols and clouds on surface temperature from a terrestrial surface energy budget perspective using the National Center for Atmospheric Research (NCAR) Community Earth System Model version 1.2.1 (CESM1.2.1). It is found that land cover enhances the spatial variation of the temperature response to aerosol direct radiative effects (DRE) and cloud radiative effects (CRE) during daytime and nighttime respectively while it reduces that of the temperature response to CRE during the daytime by collocation of local surface climate sensitivity and aerosol DRE and CRE. With identical anthropogenic aerosol emissions over eight major emission regions in the past, present and future projections including Brazil, China, East Africa, India, Indonesia, South Africa, the United States and Western Europe, local temperature responses to aerosol DRE (CRE) are more strongly regulated by land cover in the daytime (nighttime).


2021 ◽  
Vol 12 ◽  
Author(s):  
Geonhee Hwang ◽  
Jeeyoon Park ◽  
Soohwan Kim ◽  
Jeonghyang Park ◽  
Dain Seo ◽  
...  

Thermomorphogenesis is the morphological response of plants to an elevation in the ambient temperature, which is mediated by the bHLH transcription factor PIF4. The evening-expressed clock component, PRR5, directly represses the expression of PIF4 mRNA. Additionally, PRR5 interacts with PIF4 protein and represses its transactivation activity, which in turn suppresses the thermoresponsive growth in the evening. Here, we found that the B-box zinc finger protein, BBX18, interacts with PRR5 through the B-Box2 domain. Deletion of the B-Box2 domain abolished the functions of BBX18, including the stimulation of PIF4 mRNA expression and hypocotyl growth. Overexpression of BBX18, and not of B-Box2-deleted BBX18, restored the expression of thermoresponsive genes in the evening. We further show that BBX18 prevents PRR5 from inhibiting PIF4-mediated high temperature responses. Taken together, our results suggest that BBX18 regulates thermoresponsive growth through the PRR5-PIF4 pathway.


2021 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Lukas Muzika ◽  
Michal Svantner ◽  
Milan Honner ◽  
Sarka Houdkova

The paper deals with a new approach to laser thermography for the inspection of coating thickness. The approach is based on scanning the specimen surface point by point, using a low-power laser, and recording the temperature responses with an IR camera. A recorded sequence is then transformed into a sequence similar to a flash pulse thermography sequence. Fast Fourier transform was used as a processing technique. The results are compared with a flash pulse thermography measurement. It was shown that the laser thermography measurement provides a higher sensitivity to thickness changes than flash pulse thermography measurement.


2021 ◽  
Vol 118 (42) ◽  
pp. e2104863118
Author(s):  
Daniel J. Wieczynski ◽  
Pranav Singla ◽  
Adrian Doan ◽  
Alexandra Singleton ◽  
Ze-Yi Han ◽  
...  

Microbial communities regulate ecosystem responses to climate change. However, predicting these responses is challenging because of complex interactions among processes at multiple levels of organization. Organismal traits that determine individual performance and ecological interactions are essential for scaling up environmental responses from individuals to ecosystems. We combine protist microcosm experiments and mathematical models to show that key traits—cell size, shape, and contents—each explain different aspects of species’ demographic responses to changes in temperature. These differences in species’ temperature responses have complex cascading effects across levels of organization—causing nonlinear shifts in total community respiration rates across temperatures via coordinated changes in community composition, equilibrium densities, and community–mean species mass in experimental protist communities that tightly match theoretical predictions. Our results suggest that traits explain variation in population growth, and together, these two factors scale up to influence community- and ecosystem-level processes across temperatures. Connecting the multilevel microbial processes that ultimately influence climate in this way will help refine predictions about complex ecosystem–climate feedbacks and the pace of climate change itself.


2021 ◽  
Vol 21 (19) ◽  
pp. 14941-14958
Author(s):  
Kalle Nordling ◽  
Hannele Korhonen ◽  
Jouni Räisänen ◽  
Antti-Ilari Partanen ◽  
Bjørn H. Samset ◽  
...  

Abstract. Understanding the regional surface temperature responses to different anthropogenic climate forcing agents, such as greenhouse gases and aerosols, is crucial for understanding past and future regional climate changes. In modern climate models, the regional temperature responses vary greatly for all major forcing agents, but the causes of this variability are poorly understood. Here, we analyze how changes in atmospheric and oceanic energy fluxes due to perturbations in different anthropogenic climate forcing agents lead to changes in global and regional surface temperatures. We use climate model data on idealized perturbations in four major anthropogenic climate forcing agents (CO2, CH4, sulfate, and black carbon aerosols) from Precipitation Driver Response Model Intercomparison Project (PDRMIP) climate experiments for six climate models (CanESM2, HadGEM2-ES, NCAR-CESM1-CAM4, NorESM1, MIROC-SPRINTARS, GISS-E2). Particularly, we decompose the regional energy budget contributions to the surface temperature responses due to changes in longwave and shortwave fluxes under clear-sky and cloudy conditions, surface albedo changes, and oceanic and atmospheric energy transport. We also analyze the regional model-to-model temperature response spread due to each of these components. The global surface temperature response stems from changes in longwave emissivity for greenhouse gases (CO2 and CH4) and mainly from changes in shortwave clear-sky fluxes for aerosols (sulfate and black carbon). The global surface temperature response normalized by effective radiative forcing is nearly the same for all forcing agents (0.63, 0.54, 0.57, 0.61 K W−1 m2). While the main physical processes driving global temperature responses vary between forcing agents, for all forcing agents the model-to-model spread in temperature responses is dominated by differences in modeled changes in longwave clear-sky emissivity. Furthermore, in polar regions for all forcing agents the differences in surface albedo change is a key contributor to temperature responses and its spread. For black carbon, the modeled differences in temperature response due to shortwave clear-sky radiation are also important in the Arctic. Regional model-to-model differences due to changes in shortwave and longwave cloud radiative effect strongly modulate each other. For aerosols, clouds play a major role in the model spread of regional surface temperature responses. In regions with strong aerosol forcing, the model-to-model differences arise from shortwave clear-sky responses and are strongly modulated by combined temperature responses to oceanic and atmospheric heat transport in the models.


Sign in / Sign up

Export Citation Format

Share Document