uranium deposits
Recently Published Documents


TOTAL DOCUMENTS

987
(FIVE YEARS 112)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
pp. 99-134
Author(s):  
Fares Howari ◽  
Abdelaty Salman ◽  
Philip Goodell
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 52
Author(s):  
Ming-Kuan Qin ◽  
Shao-Hua Huang ◽  
Jia-Lin Liu ◽  
Zhang-Yue Liu ◽  
Qiang Guo ◽  
...  

The evolution characteristics of hydrothermal activity and superimposed uranium mineralization in the Qianjiadian ore field in southwestern Songliao Basin are still controversial and lack direct evidence. In this comprehensive study, a detailed identification of dolerite and hydrothermally altered un-mineralized sandstone and sandstone-hosted ore in the Yaojia Formation have been performed through the use of scanning electron microscopy observation, electron probe, carbon-oxygen-sulfur isotope, and fluid inclusion analyses. The results show that the hydrothermal fluid derived from the intermediate-basic magma intrusion is a low-temperature reducing alkaline fluid and rich in CO2, Si, Zr, Ti, Fe, Mg, Mn, and Ca, producing different types of altered mineral assemblages in the rocks, including carbonation, pyritization, sphalerite mineralization, clausthalite mineralization, silicification, and biotitization. Specifically, the carbonate minerals in sandstone are mixed products of deep hydrothermal fluid and meteoric water, with carbon and oxygen isotopes ranging from −5.2‰ to −1.7‰ and −20.4‰ to −11.1‰, respectively. Carbon source of the carbonate minerals in dolerite is mainly inorganic carbon produced at the late stage of intermediate-basic magma evolution, with carbon and oxygen isotopes from −16.1‰ to −7.2‰ and −18.2‰ to −14.5‰, respectively. Various carbonate minerals in the rocks may have been precipitated by the hydrothermal fluid after the magmatic stage, due to the change of its CO2 fugacity, temperature, and cation concentration during the long-term evolution stage. A series of carbonate minerals were generated as calcite, dolomite, ankerite, ferromanganese dolomite, and dawsonite. The precipitation processes and different types of carbonate mineral mixtures identified in this study mainly occur as parallel, gradual transition, interlacing, or inclusion metasomatism in the same vein body, without obvious mineralogical and petrologic characteristics of penetrating relationship. Homogenization temperature of fluid inclusions in calcite is high, in the range of 203–234 °C, with a low salinity of 0.71–4.34% NaCl, and the data range is relatively concentrated. Homogenization temperature of fluid inclusions in ankerite is usually low, ranging from 100 °C to 232 °C, with a high salinity of 4.18–9.98% NaCl. The precipitation processes of carbonate minerals and the results of this study are basically in consistent. Overall, the sandstone-type uranium deposits have a temporal and genetic relationship with hydrothermal activities during Paleogene. (1) Hydrothermal activity was directly involved in uranium mineralization, result in dissolution and reprecipitation of earlier uranium minerals, forming uranium-bearing ankerite and complexes containing uranium, zirconium, silicon, and titanium. (2) Hydrothermal fluid activity provided reducing agent to promote hydrocarbon generation from pyrolysis of carbonaceous fragments and accelerate uranium precipitation rate. (3) Regional water stagnation prolongs reaction time, contributing to huge uranium enrichment. This study provides new petrologic, mineralogical, and geochemical evidence for multi-fluid coupled and superimposed mineralization of sandstone-hosted uranium deposits in the sedimentary basin.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7448
Author(s):  
Chaoyang Huang ◽  
Jianming Peng ◽  
Yanliang Li ◽  
Moke Lian ◽  
Chao Guo ◽  
...  

The target strata of sandstone-type uranium deposits are usually located in the fragile and loose strata, which makes it difficult to obtain core samples; consequently, a novel ice coring device for loose sandstone-type uranium deposits is proposed to solve this problem. Experiments proved that the artificial sample can replace the natural sample, and the coring method has high reliability. Ensuring the allegro formation of an ice valve with a given cold source is critical for this coring system, and reducing the loss of cold energy with help of insulation layer is one of the methods to speed up the formation of ice valve. Since the diameter of the drill tool is limited by its working scenario, the thickness of insulation layer is limited to ensure the size of core. Therefore, this paper conducted laboratory experiments of the insulation layer with different thicknesses to study the effect of the insulation layer on the formation of the sand–ice valve. Results show that the insulation layer can reduce the loss of cold energy during the freezing process and significantly affect the formation time of the sand–ice valve. When the thickness of the aerogel insulation layer is 2 mm, the freezing time is 44% shorter than that without insulation layer. According to the tests, the novel ice coring device is expected to solve the coring problem in loose sandstone-type uranium deposits.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1173
Author(s):  
Zhengqi Xu ◽  
Minghui Yin ◽  
Youliang Chen ◽  
Lu Xiang ◽  
Hao Song ◽  
...  

Megacrystalline uraninite (up to one centimeter in size) represents one of the most important discoveries in uranium mineralogy in the western margin of the Yangtze Block and even in China in recent years. However, the genesis of megacrystalline uraninite remains controversial. In this study, the megacrystalline uraninite found in the felsic and quartz veins in the Haita area is examined for the first time. The study examined the geochemical characteristics of uraninite in the two veins and resulted in two primary findings. (1) The genesis of the uraninite was likely intrusive and was closely related to partial melting. (2) The quartz vein and feldspar vein are cogenetic and have a simple differentiation evolution relationship. Therefore, the partial melting of felsic materials during migmatization may be the most important mechanism of uranium mineralization in the study area. Furthermore, further simple fractional crystallization may be another important mechanism for the formation of megacrystalline uraninite. This study enriches the REE database of uraninite in uranium deposits worldwide, which is meaningful for studying the genesis of megacrystalline uraninite.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1096
Author(s):  
Zhangqing Sun ◽  
Yaguang Liu ◽  
Fuxing Han ◽  
Fengjiao Zhang ◽  
Xiyang Ou ◽  
...  

It is of great significance to quickly obtain the sedimentary characteristics of sandstone type uranium reservoir for guiding prospecting sandstone type uranium deposits. In order to solve this problem, a method based on the extraction and optimization of 3D seismic attributes is proposed. The target stratum of the uranium reservoir is accurately located by using the gamma and acoustic logging data together. The well seismic calibration for the uranium reservoir is carried out by making full use of the logging and seismic data. The high-density fine horizon tracking is implemented for the top, bottom, and obvious adjacent interfaces of the target stratum. Various seismic attributes along the target interface are extracted using stratigraphic slices. Analyzing the consistency between the results obtained by various seismic attributes and drilling data, the one that can best characterize the sedimentary characteristics of the target uranium reservoir is selected as the optimal seismic attribute. The sedimentary and its evolutionary characteristics of the target uranium reservoir are obtained by extracting the above optimal seismic attribute. A case study shows that we can obtain the 3D sedimentary characteristics of the target uranium reservoir fast and efficiently using the method based on the 3D seismic attribute. They can be used for providing important reference information for the exploration of sandstone type uranium deposits.


2021 ◽  
Vol 15 (3) ◽  
pp. 95-101
Author(s):  
Zhiger Kenzhetaev ◽  
Marzhan Nurbekova ◽  
Kuanysh Togizov ◽  
Moldir Abdraimova ◽  
Bakytzhan Toktaruly

Purpose. Improving the efficiency of borehole uranium mining and the selection of special decolmating solutions to improve the filtration characteristics of the seam due to effective destruction, as well as by preventing the sedimentation in the productive horizon, depending on the mineralogical composition and structure of sediment-forming materials. Methods. The advantages and disadvantages of the main methods used for improving the filtration characteristics of the productive horizon, when mining the uranium deposits by the borehole method, have been studied. Samples of sedimentation from the productive horizon are taken at the uranium deposit of the Shu-Syrasu depression. The quantitative and qualitative parameters, as well as the peculiarities of the mineral compositions have been determined by the X-ray phase method. A methodology has been developed and laboratory experiments have been conducted on the treatment of sedimentation samples by the drop method using various compositions of selected decolmating solutions. The microscopic method is used to determine the structure and peculiarities of sedimentation before and after treatment with various decolmating solutions. Findings. The effectiveness of the main methods used to improve the filtration characteristics of seams in the uranium deposits, mined by the borehole method, has been determined. The structure and composition of sedimentation, which causes a decrease in the filtration characteristics of the productive horizon, have been determined. To destroy and prevent the sedimentation in the productive horizon, an effective composition of a special decolmating solution using ammonium hydrogen fluoride with the addition of sulphuric acid and surfactants has been selected. An effective method for increasing the filtration characteristics of the productive horizon with the use of special decolmating solutions has been developed and scientifically substantiated. Originality. The use of special decolmating solutions based on ammonium hydrogen fluoride with the addition of sulphuric acid and surfactants according to the developed methodology allows to effectively destroy and prevent sedimentation in the productive horizon of borehole uranium ore mining. Practical implications. The use of the developed decolmating solution and a special methodology for the intensification of borehole uranium mining can reduce the operating costs of its production. This increases the ecological and industrial safety of the work to intensify the leaching of uranium ores.


Sign in / Sign up

Export Citation Format

Share Document