retinal blood vessel
Recently Published Documents


TOTAL DOCUMENTS

307
(FIVE YEARS 121)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Vol 71 (2) ◽  
pp. 2459-2476
Author(s):  
Sonali Dash ◽  
Sahil Verma ◽  
Kavita ◽  
N. Z. Jhanjhi ◽  
Mehedi Masud ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
pp. 1-16
Author(s):  
Antolín Cantó ◽  
Javier Martínez ◽  
Giuliana Perini-Villanueva ◽  
María Miranda ◽  
Eloy Bejarano

Diabetes mellitus is a chronic disease often accompanied by diabetic retinopathy (DR), one of the most common diabetic complications. DR is an eye condition that causes vision deficiency and often leads to blindness. DR develops when blood vessels damage the retina, the light-sensitive tissue at the back of the eye. Before changes in retinal blood vessel permeability, different molecular and anatomical modifications take place in the retina, including early neural changes. This review will summarize the current status of knowledge regarding pathophysiological mechanisms underlying DR, with a special focus on early neural modifications associated with DR. We describe hyperglycemia-associated molecular and cellular alterations linked to the initiation and progression of DR. We also discuss retinal neurodegeneration as a shared feature in different in vitro and in vivo models of DR. Given how ubiquitous diabetes is and how severe the effects of DR are, we also examine the current pharmacological and genetic approaches for combatting this disease.


2021 ◽  
Vol 12 (6) ◽  
pp. 1875-1885
Author(s):  
Salih N. D. ◽  
Wan Noorshahida Mohd Isa ◽  
Marwan D. Saleh

2021 ◽  
Vol 11 (24) ◽  
pp. 11907
Author(s):  
Chen Ding ◽  
Runze Li ◽  
Zhouyi Zheng ◽  
Youfa Chen ◽  
Dushi Wen ◽  
...  

Retinal blood vessel segmentation plays an important role for analysis of retinal diseases, such as diabetic retinopathy and glaucoma. However, retinal blood vessel segmentation remains a challenging task due to the low contrast between some vessels and background, the different presenting conditions caused by uneven illumination and the artificial segmentation results are influenced by human experience, which seriously affects the classification accuracy. To address this problem, we propose a multiple multi-scale neural networks knowledge transfer and integration method in order to accurately segment for retinal blood vessel image. With the integration of multi-scale networks and multi-scale input patches, the blood vessel segmentation performance is obviously improved. In addition, applying knowledge transfer to the network training process, the pre-trained network reduces the number of network training iterations. The experimental results on the DRIVE dataset and the CHASE_DB1 dataset show the effectiveness of the method, whose average accuracy on the two datasets are 96.74% and 97.38%, respectively.


Author(s):  
Erwin ◽  
Hadrians Kesuma Putra ◽  
Bambang Suprihatin ◽  
Fathoni

The retinal blood vessels in humans are major components with different shapes and sizes. The extraction of the blood vessels from the retina is an important step to identify the type or nature of the pattern of the diseases in the retina. Furthermore, the retinal blood vessel was also used for diagnosis, detection, and classification. The most recent solution in this topic is to enable retinal image improvement or enhancement by a convolution filter and Sauvola threshold. In image enhancement, gamma correction is applied before filtering the retinal fundus. After that, the image should be transformed to a gray channel to enhance pictorial clarity using contrast-limited histogram equalization. For filter, this paper combines two convolution filters, namely sharpen and smooth filters. The Sauvola threshold, the morphology, and the medium filter are applied to extract blood vessels from the retinal image. This paper uses DRIVE and STARE datasets. The accuracies of the proposed method are 95.37% for DRIVE with a runtime of 1.77[Formula: see text]s and 95.17% for STARE with 2.05[Formula: see text]s runtime. Based on the result, it concludes that the proposed method is good enough to achieve average calculation parameters of a low time quality, quick, and significant.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2017
Author(s):  
Sonali Dash ◽  
Sahil Verma ◽  
Kavita Kavita ◽  
Md. Sameeruddin Khan ◽  
Marcin Wozniak ◽  
...  

Retinal blood vessels have been presented to contribute confirmation with regard to tortuosity, branching angles, or change in diameter as a result of ophthalmic disease. Although many enhancement filters are extensively utilized, the Jerman filter responds quite effectively at vessels, edges, and bifurcations and improves the visualization of structures. In contrast, curvelet transform is specifically designed to associate scale with orientation and can be used to recover from noisy data by curvelet shrinkage. This paper describes a method to improve the performance of curvelet transform further. A distinctive fusion of curvelet transform and the Jerman filter is presented for retinal blood vessel segmentation. Mean-C thresholding is employed for the segmentation purpose. The suggested method achieves average accuracies of 0.9600 and 0.9559 for DRIVE and CHASE_DB1, respectively. Simulation results establish a better performance and faster implementation of the suggested scheme in comparison with similar approaches seen in the literature.


Author(s):  
Leticia Gómez‐Sánchez ◽  
Marta Gómez‐Sánchez ◽  
Carmen Patino‐Alonso ◽  
Jose I. Recio‐Rodríguez ◽  
Jesús González‐Sánchez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document