dynamic coupling
Recently Published Documents


TOTAL DOCUMENTS

670
(FIVE YEARS 150)

H-INDEX

43
(FIVE YEARS 6)

2022 ◽  
Vol 119 (1) ◽  
pp. e2107763119
Author(s):  
Lena Harker-Kirschneck ◽  
Anne E. Hafner ◽  
Tina Yao ◽  
Christian Vanhille-Campos ◽  
Xiuyun Jiang ◽  
...  

Living systems propagate by undergoing rounds of cell growth and division. Cell division is at heart a physical process that requires mechanical forces, usually exerted by assemblies of cytoskeletal polymers. Here we developed a physical model for the ESCRT-III–mediated division of archaeal cells, which despite their structural simplicity share machinery and evolutionary origins with eukaryotes. By comparing the dynamics of simulations with data collected from live cell imaging experiments, we propose that this branch of life uses a previously unidentified division mechanism. Active changes in the curvature of elastic cytoskeletal filaments can lead to filament perversions and supercoiling, to drive ring constriction and deform the overlying membrane. Abscission is then completed following filament disassembly. The model was also used to explore how different adenosine triphosphate (ATP)-driven processes that govern the way the structure of the filament is changed likely impact the robustness and symmetry of the resulting division. Comparisons between midcell constriction dynamics in simulations and experiments reveal a good agreement with the process when changes in curvature are implemented at random positions along the filament, supporting this as a possible mechanism of ESCRT-III–dependent division in this system. Beyond archaea, this study pinpoints a general mechanism of cytokinesis based on dynamic coupling between a coiling filament and the membrane.


Author(s):  
Siyuan Wu ◽  
Ruijuan Xiao ◽  
Hong Li ◽  
Liquan Chen

Understanding the ion diffusion mechanism is one of the key preconditions for designing superionic conductors in solid state lithium batteries and many other energy devices. Besides single-cation vacancy/interstitial-assisted and multi-cation...


Author(s):  
Luiz Pessoa ◽  
Loreta Medina ◽  
Ester Desfilis

Mental terms—such as perception, cognition, action, emotion, as well as attention, memory, decision-making—are epistemically sterile. We support our thesis based on extensive comparative neuroanatomy knowledge of the organization of the vertebrate brain. Evolutionary pressures have moulded the central nervous system to promote survival. Careful characterization of the vertebrate brain shows that its architecture supports an enormous amount of communication and integration of signals, especially in birds and mammals. The general architecture supports a degree of ‘computational flexibility’ that enables animals to cope successfully with complex and ever-changing environments. Here, we suggest that the vertebrate neuroarchitecture does not respect the boundaries of standard mental terms, and propose that neuroscience should aim to unravel the dynamic coupling between large-scale brain circuits and complex, naturalistic behaviours. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.


2021 ◽  
Vol 22 (24) ◽  
pp. 13587
Author(s):  
Sijin Chen ◽  
Xiaoyan Ding ◽  
Chao Sun ◽  
Anthony Watts ◽  
Xiao He ◽  
...  

Aromatic residues are highly conserved in microbial photoreceptors and play crucial roles in the dynamic regulation of receptor functions. However, little is known about the dynamic mechanism of the functional role of those highly conserved aromatic residues during the receptor photocycle. Tyrosine 185 (Y185) is a highly conserved aromatic residue within the retinal binding pocket of bacteriorhodopsin (bR). In this study, we explored the molecular mechanism of the dynamic coupling of Y185 with the bR photocycle by automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) calculations and molecular dynamic (MD) simulations based on chemical shifts obtained by 2D solid-state NMR correlation experiments. We observed that Y185 plays a significant role in regulating the retinal cis–trans thermal equilibrium, stabilizing the pentagonal H-bond network, participating in the orientation switch of Schiff Base (SB) nitrogen, and opening the F42 gate by interacting with the retinal and several key residues along the proton translocation channel. Our findings provide a detailed molecular mechanism of the dynamic couplings of Y185 and the bR photocycle from a structural perspective. The method used in this paper may be applied to the study of other microbial photoreceptors.


2021 ◽  
Author(s):  
Jia lei Cao

Abstract Inclusive Green growth (IGG) offers an effective alternative to pursue sustainable development. The core of the IGG system lies in the coordination of inclusive, green, and growth subsystems. However, there is little quantitative assessment on IGG based on subsystem collaboration. This paper explores the dynamic coupling IGG nexus in western Yangtze River Delta of China from 2009 to 2018, by using the entropy weight approach (EWA), coupling coordination degree model (CCDM) and obstacle factor diagnostic model (OFDM). The results show that: (1) The integrated approach can allow assessment of the spatiotemporal dynamic coupling nexus of IGG subsystems; (2) At the provincial level, a relatively high IGG performance and a low coupling coordination degree (CCD) of the IGG nexus are seen. The impact of indicators on the coordinated development of IGG can be divided into two stages; (3) At the prefectural level, the cities in which CCD is rising outnumber those it is falling. However, the CCD is also low, and the gap among the regions is getting wider. The obstacles that affect the CCD of cities see a dynamic evolution trend from “inclusive obstacle type” to “inclusive and growth obstacle type” then to “green obstacle type” over the decade.


2021 ◽  
Vol 930 ◽  
Author(s):  
Wenwu Yang ◽  
Yi-Zhao Zhang ◽  
Bo-Fu Wang ◽  
Yuhong Dong ◽  
Quan Zhou

We investigate the dynamic couplings between particles and fluid in turbulent Rayleigh–Bénard (RB) convection laden with isothermal inertial particles. Direct numerical simulations combined with the Lagrangian point-particle mode were carried out in the range of Rayleigh number $1\times 10^6 \le {Ra}\le 1 \times 10^8$ at Prandtl number ${Pr}=0.678$ for three Stokes numbers ${St_f}=1 \times 10^{-3}$ , $8 \times 10^{-3}$ and $2.5 \times 10^{-2}$ . It is found that the global heat transfer and the strength of turbulent momentum transfer are altered a small amount for the small Stokes number and large Stokes number as the coupling between the two phases is weak, whereas they are enhanced a large amount for the medium Stokes number due to strong coupling of the two phases. We then derived the exact relation of kinetic energy dissipation in the particle-laden RB convection to study the budget balance of induced and dissipated kinetic energy. The strength of the dynamic coupling can be clearly revealed from the percentage of particle-induced kinetic energy over the total induced kinetic energy. We further derived the power law relation of the averaged particles settling rate versus the Rayleigh number, i.e. $S_p/(d_p/H)^2{\sim} Ra^{1/2}$ , which is in remarkable agreement with our simulation. We found that the settling and preferential concentration of particles are strongly correlated with the coupling mechanisms.


Sign in / Sign up

Export Citation Format

Share Document