isoprene oxidation
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 28)

H-INDEX

40
(FIVE YEARS 3)

2021 ◽  
Vol 14 (10) ◽  
pp. 6309-6329
Author(s):  
Dandan Wei ◽  
Hariprasad D. Alwe ◽  
Dylan B. Millet ◽  
Brandon Bottorff ◽  
Michelle Lew ◽  
...  

Abstract. The FORCAsT (FORest Canopy Atmosphere Transfer) model version 1.0 is updated to FORCAsT 2.0 by implementing five major changes, including (1) a change to the operator splitting, separating chemistry from emission and dry deposition, which reduces the run time of the gas-phase chemistry by 70 % and produces a more realistic in-canopy profile for isoprene; (2) a modification of the eddy diffusivity parameterization to produce greater and more realistic vertical mixing in the boundary layer, which ameliorates the unrealistic simulated end-of-day peaks in isoprene under well-mixed conditions and improves daytime air temperature; (3) updates to dry deposition velocities with available measurements; (4) implementation of the Reduced Caltech Isoprene Mechanism (RCIM) to reflect the current knowledge of isoprene oxidation; and (5) extension of the aerosol module to include isoprene-derived secondary organic aerosol (iSOA) formation. Along with the operator splitting, modified vertical mixing, and dry deposition, RCIM improves the estimation of first-generation isoprene oxidation products (methyl vinyl ketone and methacrolein) and some second-generation products (such as isoprene epoxydiols). Inclusion of isoprene in the aerosol module in FORCAsT 2.0 leads to a 7 % mass yield of iSOA. The most important iSOA precursors are IEPOX and tetrafunctionals, which together account for >86 % of total iSOA. The iSOA formed from organic nitrates is more important in the canopy, accounting for 11 % of the total iSOA. The tetrafunctionals compose up to 23 % of the total iSOA formation, highlighting the importance of the fate (i.e., dry deposition and gas-phase chemistry) of later-generation isoprene oxidation products in estimating iSOA formation.


2021 ◽  
Vol 21 (17) ◽  
pp. 12949-12963
Author(s):  
Hong Ren ◽  
Wei Hu ◽  
Lianfang Wei ◽  
Siyao Yue ◽  
Jian Zhao ◽  
...  

Abstract. Secondary organic aerosol (SOA) plays a significant role in atmospheric chemistry. However, little is known about the vertical profiles of SOA in the urban boundary layer (UBL). This knowledge gap constrains the SOA simulation in chemical transport models. Here, the aerosol samples were synchronously collected at 8, 120, and 260 m based on a 325 m meteorological tower in Beijing from 15 August to 10 September 2015. Strict emission controls were implemented during this period for the 2015 China Victory Day parade. Here, we observed that the total concentration of biogenic SOA tracers increased with height. The fraction of SOA from isoprene oxidation increased with height, whereas the fractions of SOA from monoterpenes and sesquiterpenes decreased, and 2,3-dihydroxy-4-oxopentanoic acid (DHOPA), a tracer of anthropogenic SOA from toluene oxidation, also increased with height. The complicated vertical profiles of SOA tracers highlighted the need to characterize SOA within the UBL. The mass concentration of estimated secondary organic carbon (SOC) ranged from 341 to 673 ng C m−3. The increase in the estimated SOC fractions from isoprene and toluene with height was found to be more related to regional transport, whereas the decrease in the estimated SOC from monoterpenes and sesquiterpene with height was more subject to local emissions. Emission controls during the parade reduced SOC by 4 %–35 %, with toluene SOC decreasing more than the other SOC. This study demonstrates that vertical distributions of SOA within the UBL are complex, and the vertical profiles of SOA concentrations and sources should be considered in field and modeling studies in the future.


2021 ◽  
Vol 21 (15) ◽  
pp. 12141-12153
Author(s):  
Chao Qin ◽  
Yafeng Gou ◽  
Yuhang Wang ◽  
Yuhao Mao ◽  
Hong Liao ◽  
...  

Abstract. Gas–particle partitioning of water-soluble organic compounds plays a significant role in influencing the formation, transport, and lifetime of organic aerosols in the atmosphere, but is poorly characterized. In this work, gas- and particle-phase concentrations of isoprene oxidation products (C5-alkene triols and 2-methylterols), levoglucosan, and sugar polyols were measured simultaneously at a suburban site of the western Yangtze River Delta in east China. All target polyols were primarily distributed into the particle phase (85.9 %–99.8 %). Given the uncertainties in measurements and vapor pressure predictions, a dependence of particle-phase fractions on vapor pressures cannot be determined. To explore the impact of aerosol liquid water on gas–particle partitioning of polyol tracers, three partitioning schemes (Cases 1–3) were proposed based on equilibriums of gas vs. organic and aqueous phases in aerosols. If particulate organic matter (OM) is presumed as the only absorbing phase (Case 1), the measurement-based absorptive partitioning coefficients (Kp,OMm) of isoprene oxidation products and levoglucosan were more than 10 times greater than predicted values (Kp,OMt). The agreement between Kp,OMm and Kp,OMt was substantially improved when solubility in a separate aqueous phase was included, whenever water-soluble and water-insoluble OM partitioned into separate (Case 2) or single (Case 3) liquid phases, suggesting that the partitioning of polyol tracers into the aqueous phase in aerosols should not be ignored. The measurement-based effective Henry's law coefficients (KH,em) of polyol tracers were orders of magnitude higher than their predicted values in pure water (KH,wt). Due to the moderate correlations between log⁡(KH,em/KH,wt) and molality of sulfate ions, the gap between KH,em and KH,wt of polyol tracers could not be fully parameterized by the equation defining “salting-in” effects and might be ascribed to mechanisms of reactive uptake, aqueous phase reaction, “like-dissolves-like” principle, etc. These study results also partly reveal the discrepancy between observation and modeling of organic aerosols.


2021 ◽  
Vol 21 (13) ◽  
pp. 10799-10824
Author(s):  
Rongrong Wu ◽  
Luc Vereecken ◽  
Epameinondas Tsiligiannis ◽  
Sungah Kang ◽  
Sascha R. Albrecht ◽  
...  

Abstract. Isoprene oxidation by nitrate radical (NO3) is a potentially important source of secondary organic aerosol (SOA). It is suggested that the second or later-generation products are the more substantial contributors to SOA. However, there are few studies investigating the multi-generation chemistry of isoprene-NO3 reaction, and information about the volatility of different isoprene nitrates, which is essential to evaluate their potential to form SOA and determine their atmospheric fate, is rare. In this work, we studied the reaction between isoprene and NO3 in the SAPHIR chamber (Jülich) under near-atmospheric conditions. Various oxidation products were measured by a high-resolution time-of-flight chemical ionization mass spectrometer using Br− as the reagent ion. Most of the products detected are organic nitrates, and they are grouped into monomers (C4 and C5 products) and dimers (C10 products) with 1–3 nitrate groups according to their chemical composition. Most of the observed products match expected termination products observed in previous studies, but some compounds such as monomers and dimers with three nitrogen atoms were rarely reported in the literature as gas-phase products from isoprene oxidation by NO3. Possible formation mechanisms for these compounds are proposed. The multi-generation chemistry of isoprene and NO3 is characterized by taking advantage of the time behavior of different products. In addition, the vapor pressures of diverse isoprene nitrates are calculated by different parametrization methods. An estimation of the vapor pressure is also derived from their condensation behavior. According to our results, isoprene monomers belong to intermediate-volatility or semi-volatile organic compounds and thus have little effect on SOA formation. In contrast, the dimers are expected to have low or extremely low volatility, indicating that they are potentially substantial contributors to SOA. However, the monomers constitute 80 % of the total explained signals on average, while the dimers contribute less than 2 %, suggesting that the contribution of isoprene NO3 oxidation to SOA by condensation should be low under atmospheric conditions. We expect a SOA mass yield of about 5 % from the wall-loss- and dilution-corrected mass concentrations, assuming that all of the isoprene dimers in the low- or extremely low-volatility organic compound (LVOC or ELVOC) range will condense completely.


2021 ◽  
Author(s):  
Dandan Wei ◽  
Hariprasad D. Alwe ◽  
Dylan B. Millet ◽  
Brandon Bottorff ◽  
Michelle Lew ◽  
...  

Abstract. The FORCAsT (FORest Canopy Atmosphere Transfer) model version 1.0 is updated to FORCAsT 2.0 by implementing five major changes, including (1) a change to the operator splitting, separating chemistry from emission and dry deposition, which reduces the run time of the gas-phase chemistry by 70 % and produces a more realistic in-canopy profile for isoprene; (2) a modification of the eddy diffusivity parameterization to produce greater and more realistic vertical mixing in the boundary layer, which ameliorates the unrealistic simulated end-of-day peaks in isoprene under well-mixed conditions and improves daytime air temperature; (3) updates to dry deposition velocities with available measurements; (4) implementation of the Reduced Caltech isoprene mechanism (RCIM) to reflect the current knowledge of isoprene oxidation; and (5) extension of the aerosol module to include isoprene-derived aerosol (iSOA) formation. Along with the operator splitting, modified vertical mixing and dry deposition, RCIM improves the estimation of first generation isoprene oxidation products (methyl vinyl ketone and methacrolein) and some second generation products (such as isoprene epoxydiols). Inclusion of isoprene in the aerosol module in FORCAsT 2.0 leads to a 7 % mass yield of iSOA. The most important iSOA precursors are IEPOX and tetrafunctionals, which together account for > 86 % of total iSOA. The iSOA formed from organic nitrates are more important in the canopy, accounting for 11 % of the total iSOA. The tetrafunctionals compose up to 23 % of the total iSOA formation, highlighting the importance of the fate (i.e. dry deposition and gas-phase chemistry) of later-generation isoprene oxidation products in estimating iSOA formation.


2021 ◽  
Author(s):  
Chao Qin ◽  
Yafeng Gou ◽  
Yuhang Wang ◽  
Yuhao Mao ◽  
Hong Liao ◽  
...  

Abstract. Gas-particle partitioning of water-soluble organic compounds plays a significant role in the formation and source apportionment of organic aerosols, but is poorly characterized. In this work, gas- and particle-phase concentrations of isoprene oxidation products (C5-alkene triols and 2-methylterols), levoglucosan, and sugar polyols were measured simultaneously at a suburban site of the western Yangtze River Delta in east China. All target polyols were primarily distributed into the particle phase (85.9–99.8 %), and their average particle-phase fractions were not strictly dependent on vapor pressures. Moreover, the measurement-based partitioning coefficients (Kp,OM) of isoprene oxidation products and levoglucosan were 102 to 104 times larger than their predicted Kp,OM based on the equilibrium absorptive partitioning model. These are likely attributed to the hygroscopic properties of polyol tracers and high aerosol liquid water (ALW) concentrations (~20 µg m−3) of the study location. Due to the large gaps (up to 107) between measurement-based effective Henry's law coefficients (KH,e) and predicted values in pure water (KH,w), the gas-particle partitioning of polyol tracers could not be depicted using Henry's law alone either. The regressions of log (KH,w/KH,e) versus molality of major water-soluble components in ALW indicated that sulfate ions (salting-in effect) and water-soluble organic carbon can promote the partitioning of polyol tracers into the aqueous phase. These results suggest a partitioning mechanism of enhanced aqueous-phase uptake for polyol tracers, which partly reveals the discrepancy between observation and modeling of secondary organic aerosols.


2021 ◽  
Author(s):  
Defeng Zhao ◽  
Iida Pullinen ◽  
Hendrik Fuchs ◽  
Stephanie Schrade ◽  
Rongrong Wu ◽  
...  

<p><strong>       </strong>Highly oxygenated organic molecules (HOM) are found to play an important role in the formation and growth of secondary organic aerosol (SOA). SOA is an important type of aerosol with significant impact on air quality and climate. Compared to the oxidation of volatile organic compounds by O<sub>3</sub> and OH, HOM formation in the oxidation by NO<sub>3</sub> radical, an important oxidant at night-time and dawn, has received less attention. In this study, HOM formation in the reaction of isoprene with NO<sub>3</sub> was investigated in the SAPHIR chamber (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). A large number of HOM including monomers (C<sub>5</sub>), dimers (C<sub>10</sub>), and trimers (C<sub>15</sub>), both closed-shell compounds and open-shell peroxy radicals, were detected. HOM were classified into various series according to their formula, which included monomers containing one or more N atoms, dimers containing 1-4 N atoms, and trimers containing 3-5 N atoms. Tentative formation pathways of HOM were proposed reflecting known NO<sub>3</sub> and RO<sub>2</sub> chemistry in the literature under consideration of the autoxidation via peroxy pathways and peroxy-alkoxy pathways. Further mechanistic constraints were given by the time profiles of HOM after sequential isoprene addition which enabled to differentiate first- and second-generation products. Total HOM molar yield was estimated, which suggests that HOM may contribute a significant fraction to SOA yield in the reaction of isoprene with NO<sub>3</sub>.</p>


2021 ◽  
Author(s):  
Vincent Huijnen ◽  
Jason Williams ◽  
Idir Bouarar ◽  
Sophie Belamari ◽  
Simon Chabrillat ◽  
...  

<p>The Integrated Forecasting System (IFS) of ECMWF is the core of the Copernicus Atmosphere Monitoring Service (CAMS) which provides global analyses and forecasts of atmospheric composition, namely reactive gases, aerosol and greenhouse gases. With respect to the atmospheric chemistry component, the operational system currently relies on a modified version of the CB05 chemistry scheme for the troposphere, combined with the Cariolle scheme to describe stratospheric ozone. In an alternative, more recent configuration also stratospheric ozone chemistry is included based on the BASCOE chemistry module. Alternative atmospheric chemistry modules which can be employed are based on MOZART and MOCAGE chemistry. <br>Recently, further revisions to the modified CB05 tropospheric chemistry scheme have been developed, focusing both on inorganic and organic chemistry, with the aim of improving the quality of existing air-quality products, and the development of new products. On major update is a revision of the isoprene oxidation scheme based on those employed in existing chemistry transport models, as well as inclusion of the basic chemistry describing C8 and C9 aromatics degradation. <br>An example of a new product derived from these updates include a description of global distribution of glyoxal, while this also resulted in an improved modeling of OH recycling particularly over tropical forests. Also we support improved secondary organic aerosol formation due to gaseous anthropogenic, biogenic and biomass burning sources.<br>In this contribution we provide an overview of these revisions, and provide a first quantification of their uncertainties, by comparing products to observations and to those from alternative chemistry modules.</p>


2021 ◽  
Vol 244 ◽  
pp. 117914
Author(s):  
M. Anwar H. Khan ◽  
Billie-Louise Schlich ◽  
Michael E. Jenkin ◽  
Michael C. Cooke ◽  
Richard G. Derwent ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document