neural controller
Recently Published Documents


TOTAL DOCUMENTS

396
(FIVE YEARS 57)

H-INDEX

27
(FIVE YEARS 3)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 177
Author(s):  
Mateusz Zychlewicz ◽  
Radoslaw Stanislawski ◽  
Marcin Kaminski

In this paper, an adaptive speed controller of the electrical drive is presented. The main part of the control structure is based on the Recurrent Wavelet Neural Network (RWNN). The mechanical part of the plant is considered as an elastic connection of two DC machines. Oscillation damping and robustness against parameter changes are achieved using network parameters updates (online). Moreover, the various combinations of the feedbacks from the state variables are considered. The initial weights of the neural network and the additional gains are tuned using a modified version of the Grey Wolf Optimizer. Convergence of the calculation is forced using a new definition. For theoretical analysis, numerical tests are presented. Then, the RWNN is implemented in a dSPACE card. Finally, the simulation results are verified experimentally.


2021 ◽  
Author(s):  
Pascal Kuate Nkounhawa ◽  
Dieunedort Ndapeu ◽  
Bienvenu Kenmeugne

Abstract In this article, an artificial neural networks (ANN) based maximum power point tracking controller (MPPT) was developed to improve the performance of the FL-M-160W solar panel under unstable environmental conditions. To develop and configure the neural controller, a database resulting from experimental tests was built for the training of the proposed model. Then the model was tested and validated under the Matlab / Simulink environment. The optimum voltage obtained at the output of the neural controller is compared to the voltage of the photovoltaic generator and the error is used to modify the duty cycle of the DC-DC boost converter. It is shown after simulations that unlike conventional controllers which are very slow, the neural MPPT controller offers more stable, more accurate output characteristics with very low response time and very low oscillations around the operating point both in transient and steady state, even under varying environmental conditions.


2021 ◽  
Author(s):  
Vahid Azimirad ◽  
Mohammad Tayefe Ramezanlou ◽  
Saleh Valizadeh Sotubadi ◽  
Farrokh Janabi-Sharifi

Author(s):  
Yan Zhao ◽  
Minhang Song ◽  
Xiangguo Huang ◽  
Ming Chen

Non-linearities and actuator faults often exist in practical systems which may degrade system performance or even lead to catastrophic accidents. In this article, a fault-tolerant compensation control strategy is proposed for a class of non-linear systems with actuator faults in simultaneous multiplicative and additive forms. First, radial basis function neural network is employed to approximate the system non-linearity. The approximation is achieved by only one adaptive parameter, which simplifies the computation burden. Then, by means of the backstepping technique, an adaptive neural controller is developed to cope with the adverse effects brought by the system non-linearity and actuator faults in multiplicative and additive forms. Meanwhile, the proposed control design scheme can guarantee that the considered closed-loop system is stable. The novelty of the article lies in that the system non-linearity, the additive actuator faults, and the multiplicative actuator faults that often exist in practical engineering are catered for simultaneously. Furthermore, compared with some existing works, the approximation of the system non-linearity is achieved by only one adaptive parameter for the purpose of reducing the computation burden. Therefore, its applicability is more general. Finally, a numerical simulation and a comparative simulation are carried out to show the effectiveness of the developed controller.


Author(s):  
Seyed Mojtaba Abbasi ◽  
Mehdi Nafar ◽  
Mohsen Simab

In this paper, using a neural controller and a genetic optimization algorithm to control the voltage as well as, control the frequency of the grid along with the management of the reactive power of the micro-grid to control the output power during islanding using Simultaneous bilateral power converters with voltage/frequency droop strategy and optimization of PI coefficients of parallel power converters by genetic-neural micro-grid algorithm to suppress AC side-current flow that increases stability and improvement of conditions frequency and voltage are discussed. Given the performance of the micro-grid in two simulation scenarios, namely transition from on-grid to off-grid, the occurrence of a step change in load in island mode as well as return to working mode is connected. The ability to detect the robust performance and proper performance of two-level neural controller. The controller performance time was also very good, indicating the appropriate features of the method used to design the controller, namely two-level neural, genetics. The main advantage of this method is its simplicity of design. The method used is also efficient and resistant to changes in the system, which results from the simulations.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Minh-Canh Huynh ◽  
Cheng-Yuan Chang

Noise in a dynamic system is practically unavoidable. Today, such noise is commonly reduced using an active noise control (ANC) system with the filtered-x least mean square (FXLMS) algorithm. However, the performance of the ANC system with FXLMS algorithm is significantly impaired in nonlinear systems. Therefore, this paper develops an efficient nonlinear adaptive feedback neural controller (NAFNC) to eliminate narrowband noise for both linear and nonlinear ANC systems. The proposed controller is implemented to update its coefficients without prior offline training by neural network. Hence, the proposed method has rapid convergence rate as confirmed by simulation results. The proposed work also analyzes the stability and convergence of the proposed algorithm. Simulation results verify the effectiveness of the proposed method.


2021 ◽  
pp. 1-14
Author(s):  
K. El Hamidi ◽  
M. Mjahed ◽  
A. El Kari ◽  
H. Ayad ◽  
N. El Gmili

Sign in / Sign up

Export Citation Format

Share Document