elongation ratio
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 58)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
S. Saravanan ◽  
R. Sushmitha ◽  
M. Arumugam Pillai

Background: Forty two crosses involving seven lines and six testers were studied for economically important yield contributing and quality traits to test the magnitude of genetic components and diversity. Formulation of efficient breeding methodology is possible by targeting the genetic architecture of genotypes. Methods: The systematic breeding programme involves generating genetic variability besides sorting off the diverse genotypes and utilizing the extreme phenotypes for producing stable varieties. Genetic diversity helps to achieve the greater continuum of genetic variability in segregating populations to reach for ideal selection of progenies. Heritability and genetic advance are other important selection parameters for retrieving better genotype through selection. Result: Significant differences in analysis of variance were recorded for all the traits. The results signified the greater value of phenotypic coefficient of variation (PCV) than genotypic coefficient of variation (GCV) and environment coefficient of variation (ECV) pertaining to the test traits studied. Among agronomical characters, the GCV and PCV were reported to be in higher estimate for number of productive tillers per plant, number of grains per panicle, single plant yield and among quality characters for gelatinization temperature (GT), length breadth (LB) ratio, gel consistency and amylose content. The present study adverted that among the yield and grain quality characters viz., number of productive tillers, number of grains per panicle, single plant yield, plant height, 1000 grain weight, milling percentage and grain length could be easily inherited to next generation due to high heritability. Whereas breadth elongation ratio and linear elongation ratio are influenced by environmental factors due to their low heritability. Further, the number of productive tillers, number of grains per panicle, single plant yield, plant height, Gel consistency and amylose content exhibited higher PCV, GCV, heritability and genetic advance and hence direct selection can be made for target traits.


2022 ◽  
Vol 334 ◽  
pp. 04018
Author(s):  
Gabriele G. Gagliardi ◽  
Carlotta Cosentini ◽  
Domenico Borello

The aim of this study is to develop composite Nafion/GO membranes, varying GO loading, to be used in a Unitized reversible fuel cell comparing its performance with the baseline Nafion. Water uptake, ion exchange capacity (IEC), tensile strength, and SEM (scanning electron microscope) analysis are discussed. The SEM analysis revealed how the GO is homogeneously disposed into the Nafion matrix. The addition of GO improves the membrane tensile strength while reducing the elongation ratio. Water uptake, IEC enhance with the increasing of GO content. Regarding fuel cell mode, the performance is analysed using a polarization curve on a MEA with an effective area of 9 cm2. The composite membrane demonstrated higher mechanical strength, enhanced water uptake so higher performance in fuel cell mode. Despite the power absorbed from the electrolysis is higher when using a composite membrane, the beneficial effect in FC mode resulted in a slightly higher round trip efficiency. The GO-Nafion membrane was not able to maintain its performance with increasing the operating time, so potentially leading to a lower lifetime than the Nafion bare.


2022 ◽  
pp. 74-91
Author(s):  
Shachi Pandey ◽  
Parmanand Kumar ◽  
Vijender Pal Panwar ◽  
Raman Nautiyal

Watersheds in the Lesser Himalayan region are highly susceptible to natural hazards, particularly those instigated by action and movement of water, such as soil erosion, flood, and mass movements of lands. Hilly watersheds with diversified land use and fragile ecosystems are responsible for accelerating soil erosion. Soil erosion is one of the most implicit hazards as it degrades water and soil quality in a watershed. The study prioritizes the soil erosion-susceptible zones in the Tons river watershed (India) in the Lesser Himalayan region. The interrelationships and role of morphometry, soil quality, slope, and land use together as four components in soil erosion are studied. Remote sensing data and multi-criteria decision method (MCDM) framework has been used to estimate soil erosion susceptibility of sub-watersheds. Results showed that morphometric parameters like elongation ratio and slope of sub-watersheds play a major role in determining the state of erosion.


2021 ◽  
Vol 14 (1) ◽  
pp. 104
Author(s):  
Ramesh Chand Bana ◽  
Ashok K. Gupta ◽  
Ram Swaroop Bana ◽  
Yashbir Singh Shivay ◽  
Shanti D. Bamboriya ◽  
...  

Deficiency of Zn in human diet is an emerging health issue in many developing countries across the globe. Agronomic Zn biofortification using diverse Zn fertilization options is being advised for enhancing Zn concentration in the edible portion of rice.A field study was carried out to find out the Zn fertilization effects on biofortification of basmati rice and nutrient use efficiencies in the Himalayan foothills region. Amongst the Zn nutrition treatments, 4.0% Zn-coated urea (ZnCU) + 0.2% Zn foliar spray (FS) using ZnSO4·7H2O recorded the highest grain (3.46 t/ha) and straw (7.93 t/ha) yield of basmati rice. On average, the rice productivity increase due to ZnCU application was ~25.4% over Commercial Urea. Likewise, the same Zn fertilization treatment also resulted in the maximum Zn (35.93 and 81.64 mg/kg) and N (1.19 and 0.45%) concentration in grain and straw of rice, respectively. Moreover, N use efficiency (NUE) was also highest when ZnCU was applied at 4.0% (ZnSO4·7H2O) in comparison to soil application. From the grain quality viewpoint, Zn ferti-fortification had significant effect on elongation ratio and protein concentration of grain only and respective Zn fertilization treatment recorded highest quality parameters 1.90 and 7.44%, respectively. Therefore, ZnCU would be an important low-cost and useful strategy for enhancing yield, NUE and biofortification, and also in minimizing the Zn malnutrition related challenges in human diet in many developing economies.


2021 ◽  
Vol 40 (3) ◽  
pp. 115-125
Author(s):  
Leo Theodon ◽  
Tatyana Eremina ◽  
Kassem Dia ◽  
Fabrice Lamadie ◽  
Jean-Charles Pinoli ◽  
...  

This paper presents a new method for estimating the parameters of a stochastic geometric model for multiphase flow image processing using local measures. Local measures differ from global measures in that they are only based on a small part of a binary image and consequently provide different information of certain properties such as area and perimeter. Since local measures have been shown to be helpful in estimating the typical grain elongation ratio of a homogeneous Boolean model, the objective of this study was to use these local measures to statistically infer the parameters of a more complex non-Boolean model from a sample of observations. An optimization algorithm is used to minimize a cost function based on the likelihood of a probability densityof local measurements. The performance of the model is analysed using numerical experiments and real observations. The errors relative to real images of most of the properties of the model-generated images are less than 2%. The covariance and particle size distribution are also calculated and compared.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Meng Ying ◽  
Chun Guo ◽  
Yun Li ◽  
Tai Yu Kang ◽  
Wu Meng Liu ◽  
...  

This work describes the wire arc additive manufacturing (WAAM) approach used to fabricate parts from wear-resistant steel. The microstructure, crystal structures, and mechanical properties of the resulting samples were thoroughly analyzed. The wear-resistant steel parts demonstrated good forming, no internal defects, good metallurgical bonding, and excellent wear resistance. The metallographic analysis confirmed that the main phase was ferrite. The microhardness of the sample along its cross section was uniform in both horizontal and vertical directions and equals to 464.7HV0.2 and 482.4 HV0.2, respectively. The average values of tensile strength, elongation ratio, and room temperature Charpy shock were equal to 945.3 MPa, 4.3%, and 5 J, respectively.


2021 ◽  
Vol 54 (2D) ◽  
pp. 138-154
Author(s):  
Mohammed S. Shamkhi

Modern technologies are used for watershed management to cope with drought risks in arid and semi-arid regions. The study aimed to conduct a morphometric analysis and know potential groundwater recharge areas in the eastern region of Wasit Province. Remote sensing and GIS data were used for morphometric analysis. The morphometric analysis results adopted the Digital Elevation Model. The results of the analysis were verified by matching the results with what exists in reality. The area of the first basin was 1482.017, as it is the largest basin from the area, with a percent of 51.228% of the total area of all basins. The percentage of first-degree flows reached 83.37% in the first basin, 74.14% percent in the second basin, 75.51% in the third basin, and 75.75% in the fourth basin from all streams in each basin. The bifurcation rate (3.135-4.233), Stream frequency range values (0.543-0.332), drainage texture coarse, low drainage density that ranged between 0.986-1.14 km/km2 elongation ratio ranging from 0.348-0.624 form factor (0.095-0.316). The basins' circularity (0.105-0.238) relief value (951-112) m infiltration number value (0.369-0.535). All basins have a longitudinal shape and lead to the formation of floods and rapid currents, which exposes the region to rapid seasonal floods and the creation of flash floods that cause soil erosion and analyses the drainage intensity results. It was low, and this is an indication that the ground has high permeability. The flow frequency results indicate that the area is semi-arid and exposed to small amounts of rain and coarse drainage texture by comparing the result parameters from morphometric analysis results for each basin. The potential recharge areas of groundwater in the study area can be known, n as the analysis results showed that recharge potential occurs in all basins. The highest groundwater recharge is possible in the third basin and the lowest in the first basin. Morphometric analysis was performed by ARC-GIS(Arc-map10.4).


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2903
Author(s):  
Hui Yang ◽  
Jiansheng Cao

In this study, based on the DEM, we extracted the drainage networks and watersheds of the Daqing Riverwith ArcGIS, investigated the basin characteristicsandthe differences in their spatial distributions and analyzed the relations of the drainagedensity with some surface conditions and how the drainagedensityinfluenced the water yield. The results suggested a power function between the mainstream length and drainage area, showing that withthe increase in basin area, the basins became longer.The result of the power function between the relief and drainage area with negative exponent values means the relief changed more slowly with increasing basin area.The values of the circularity ratio andelongation ratio indicatethat the basin shape of the mountain watersheds in theDaqing River was narrow and predisposed to flooding during periods of heavy rainfall. The orders of the streams in the mountain watersheds ranged from five to seven.The average bifurcation ratio of those nine mountainous watersheds reveals the order of the u+1 rivers in each basin of the Daqing River was on average 4 times larger than that of order u rivers. The drainage density (Dd) was high in the north and low in the south of the Daqing River. Rainfall wasnegatively correlated with drainage density, but the correlation between them was notsignificant atthe 0.05 level. Drainages developed in places with poor vegetation cover.The drainages in the southwest, north and west developed considerably, while drainages in the east and southeast did not develop much. Yet, the available data showed the impact of the watershed area, elongation ratio and drainage density on the water yield was not significant. In contrast, there was a significant positive correlation between channel slope and the water yield modulus. The hypsometric integrals and the relation between drainage density and hypsometric integral suggest that the landform evolution of the mountain basins alongthe Daqing Riverwerein the old stage with no furtherincrease trend of drainage density in the future.


2021 ◽  
Vol 58 (03) ◽  
pp. 286-299
Author(s):  
Mahesh Chand Singh ◽  
Rohit Singh ◽  
Abrar Yousuf ◽  
Vishnu Prasad

The present study examined 35 morphometric parameters related to stream/drainage network, catchment geometry, and relief aspects for hydrological characterization of the Thana Dam catchment using geospatial tools and techniques. The dam catchment was delineated using the high-resolution Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) Digital Elevation Model (DEM) data in ArcGIS 10.4.1 software using the Arc Hydro tools. The catchment is comprised of 4th order stream, obtained using a stream threshold value of 100 m length. The lower values of elongation ratio (0.61), circularity ratio (0.22), and form factor (0.29) indicated higher soil erosion potential, mainly due to their inverse relationship with land erodibility. Moreover, the higher values of stream frequency (15.7), drainage density (>5.0), drainage texture (7.48 km-1), and mean bifurcation ratio (4.08-6.33) indicated higher runoff potential, which would intensify the soil erosion, mainly due to their direct relationship with erodibility. Bifurcation ratio, elongation ratio, circulatory ratio, form factor, altogether indicated an elongated shape of the catchment with a fine drainage texture. The higher values of bifurcation ratio and texture ratio of the catchment also indicated severe overland flow (low infiltration rate) with a limited scope for groundwater recharge in the area, which in turn might significantly encourage the soil erosion. Overall, it was concluded that the catchment has a huge runoff potential resulting in high soil erosion due to its fine texture, impermeable subsurface material, steep slope, low infiltration rate, limited vegetation, longer duration of overland flow, and higher surface runoff. The morphometric analysis was found to be suitable for identifying catchment shape and the factors affecting hydrologic conditions and erodibility of the catchment. Thus, Geo-informatics based morphometric analysis of a reservoir catchment can be useful to study the erosion potential in relation to hydrologic (rainfall-runoff relationship) and other related land characteristics (e.g., relief, slope, infiltration rate, etc.).


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 703
Author(s):  
Yi Ding ◽  
Zhansheng Guo ◽  
Xinan Dong ◽  
Hong You ◽  
Junxue Mei ◽  
...  

Based on carboxylated multi-walled carbon nanotubes (MWCNTs-COOH), a MWCNTs/PVDF conductive membrane was prepared by a vacuum filtration cross-linking method. The surface compositions and morphology of conductive membranes were studied by X-ray photoelectron spectroscopy and high-resolution field emission scanning electron microscopy, respectively. The effects of cross-linked polymeric polyvinyl alcohol (PVA) on the conductive membrane properties such as the porosity, pore size distribution, pure water flux, conductivity, hydrophilicity, stability and antifouling properties were investigated. Results showed that the addition of PVA to the MWCNTs/PVDF conductive membrane decreased the pure water flux, porosity and the conductivity. However, the hydrophilicity of the modified MWCNTs/PVDF conductive membrane was greatly improved, and the contact angle of pure water was reduced from 70.18° to 25.48° with the addition of PVA contents from 0 wt% to 0.05 wt%. Meanwhile, the conductive membranes with higher content had a relatively higher stability. It was found that the conductive functional layer of the conductive membrane had an average mass loss rate of 1.22% in the 30 min ultrasonic oscillation experiment. The tensile intensity and break elongation ratio of the conductive membrane are improved by the addition of PVA, and the durability of the conductive membrane with PVA was superior to that without PVA added. The electric assisted anti-fouling experiments of modified conductive membrane indicated that compared with the condition without electric field, the average flux attenuation of the conductive membrane was reduced by 11.2%, and the membrane flux recovery rate reached 97.05%. Moreover, the addition of PVA could accelerate the clean of the conductive membranes.


Sign in / Sign up

Export Citation Format

Share Document