visible light communications
Recently Published Documents


TOTAL DOCUMENTS

1140
(FIVE YEARS 383)

H-INDEX

53
(FIVE YEARS 8)

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 134
Author(s):  
Wen Chen ◽  
Meixin Feng ◽  
Yongjun Tang ◽  
Jian Wang ◽  
Jianxun Liu ◽  
...  

GaN-on-Si resonant-cavity light-emitting diodes (RCLEDs) have been successfully fabricated through wafer bonding and Si substrate removal. By combining the chemical mechanical polishing technique, we obtained a roughness of about 0.24 nm for a scan area of 5 μm × 5 μm. The double-sided dielectric distributed Bragg reflectors could form a high-quality optical resonant cavity, and the cavity modes exhibited a linewidth of 1 nm at the peak wavelength of around 405 nm, corresponding to a quality factor of 405. High data transmission in free space with an opening in the eye diagram was exhibited at 150 Mbps, which is limited by the detection system. These results showed that GaN-based RCLEDs grown on Si are promising as a low-cost emitter for visible light communications in future.


2021 ◽  
Author(s):  
Zhaoming Wang ◽  
Li Zhang ◽  
Jingzhou Li ◽  
Guodan Wei ◽  
Yuhan Dong ◽  
...  

2021 ◽  
Vol 11 (24) ◽  
pp. 11582
Author(s):  
Julian Webber ◽  
Abolfazl Mehbodniya ◽  
Rui Teng ◽  
Ahmed Arafa ◽  
Ahmed Alwakeel

Gesture recognition (GR) has many applications for human-computer interaction (HCI) in the healthcare, home, and business arenas. However, the common techniques to realize gesture recognition using video processing are computationally intensive and expensive. In this work, we propose to task existing visible light communications (VLC) systems with gesture recognition. Different finger movements are identified by training on the light transitions between fingers using the long short-term memory (LSTM) neural network. This paper describes the design and implementation of the gesture recognition technique for a practical VLC system operating over a distance of 48 cm. The platform uses a single low-cost light-emitting diode (LED) and photo-diode sensor at the receiver side. The system recognizes gestures from interruptions in the direct light transmission, and is therefore suitable for high-speed communication. Gesture recognition accuracies were conducted for five gestures, and results demonstrate that the proposed system is able to accurately identify the gestures in up to 88% of cases.


Sign in / Sign up

Export Citation Format

Share Document