organic linker
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 54)

H-INDEX

24
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 447
Author(s):  
Mahboobeh Shahsavari ◽  
Peyman Mohammadzadeh Jahani ◽  
Iran Sheikhshoaie ◽  
Somayeh Tajik ◽  
Abbas Aghaei Afshar ◽  
...  

Metal organic frameworks (MOF) are a class of hybrid networks of supramolecular solid materials comprising a large number of inorganic and organic linkers, all bound to metal ions in a well-organized fashion. Zeolitic imidazolate frameworks (ZIFs) are a sub-group of MOFs with imidazole as an organic linker to metals; it is rich in carbon, nitrogen, and transition metals. ZIFs combine the classical zeolite characteristics of thermal and chemical stability with pore-size tunability and the rich topological diversity of MOFs. Due to the energy crisis and the existence of organic solvents that lead to environmental hazards, considerable research efforts have been devoted to devising clean and sustainable synthesis routes for ZIFs to reduce the environmental impact of their preparation. Green chemistry is the key to sustainable development, as it will lead to new solutions to existing problems. Moreover, it will present opportunities for new processes and products and, at its heart, is scientific and technological innovation. The green chemistry approach seeks to redesign the materials that make up the basis of our society and our economy, including the materials that generate, store, and transport our energy, in ways that are benign for humans and the environment and that possess intrinsic sustainability. This study covers the principles of green chemistry as used in designing strategies for synthesizing greener, less toxic ZIFs the consume less energy to produce. First, the necessity of green methods in today’s society, their replacement of the usual non-green methods and their benefits are discussed; then, various methods for the green synthesis of ZIF compounds, such as hydrothermally, ionothermally, and by the electrospray technique, are considered. These methods use the least harmful and toxic substances, especially concerning organic solvents, and are also more economical. When a compound is synthesized by a green method, a question arises as to whether these compounds can replace the same compounds as synthesized by non-green methods. For example, is the thermal stability of these compounds (which is one of the most important features of ZIFs) preserved? Therefore, after studying the methods of identifying these compounds, in the last part, there is an in-depth discussion on the various applications of these green-synthesized compounds.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1547
Author(s):  
Marie L. Mortensen ◽  
Abigail L. Lewis ◽  
Gregory McCandless ◽  
Kenneth J. Balkus

Four new isostructural 3d-4f mixed metal organic frameworks (MOFs) Cu Gd2 (BDC)4, compound 1, Cu Ho2 (BDC)4, compound 2, Cu Eu2 (BDC)4, compound 3, and Cu Dy2 (BDC)4, compound 4 were successfully synthesized. The structure, stability, and magnetic properties were analyzed. Each MOF has two lanthanide ions and one copper ion node with terephthalic acid as the organic linker. The lanthanide ions form a dimer with each having a capped trigonal prismatic geometry while the copper ion has a square planar geometry. Each of these MOFs shows varying degrees of antiferromagnetic interactions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vahid Nozari ◽  
Courtney Calahoo ◽  
Joshua M. Tuffnell ◽  
David A. Keen ◽  
Thomas D. Bennett ◽  
...  

AbstractHybrid glasses from melt-quenched metal-organic frameworks (MOFs) have been emerging as a new class of materials, which combine the functional properties of crystalline MOFs with the processability of glasses. However, only a handful of the crystalline MOFs are meltable. Porosity and metal-linker interaction strength have both been identified as crucial parameters in the trade-off between thermal decomposition of the organic linker and, more desirably, melting. For example, the inability of the prototypical zeolitic imidazolate framework (ZIF) ZIF-8 to melt, is ascribed to the instability of the organic linker upon dissociation from the metal center. Here, we demonstrate that the incorporation of an ionic liquid (IL) into the porous interior of ZIF-8 provides a means to reduce its melting temperature to below its thermal decomposition temperature. Our structural studies show that the prevention of decomposition, and successful melting, is due to the IL interactions stabilizing the rapidly dissociating ZIF-8 linkers upon heating. This understanding may act as a general guide for extending the range of meltable MOF materials and, hence, the chemical and structural variety of MOF-derived glasses.


2021 ◽  
Author(s):  
Zahra Keyvanloo ◽  
Ali Nakhaei Pour ◽  
Fatemeh Moosavi

Abstract The adsorption and diffusion of synthesis gas components (methanol, ethanol, H2, CO2, and CO molecules) in ZIF-7 by grand canonical Monte Carlo and molecular dynamics simulation were investigated. The initial diffusion coefficient at the beginning of the process depends on the kinetic diameter of the guest molecules. Also, the diffusion coefficient at equilibrium conditions probably depends on the interaction between the guest molecules with the ZIF-7 framework. The radial distribution function results indicate that the distribution of guest molecules in the framework is affected by the interaction between the guest molecules. These results also demonstrate that the Zn atom and the organic linker are favorable sites for CO2, CO, and H2. In contrast, the organic linker is the most favorable adsorption site for methanol and ethanol guest molecules. In addition, the diffusion coefficient of guest molecules in binary mixtures is related to the attraction or repulsion between the guest molecules.


NANO ◽  
2021 ◽  
pp. 2150121
Author(s):  
Zexu Chen ◽  
Yunong Li ◽  
Xuanhe Wang ◽  
Xu Zhai ◽  
Xuemin Zhang ◽  
...  

A mesoporous silica bearing uniformly distributed copper oxide nanoparticles (CuO@mesoporous SiO2) was prepared through silica nanocasting copper metal organic frameworks (MOFs) followed by calcination. The nanocasting filled the micropores of MOFs with silica and then, the calcination removed the organic linker in MOFs and converted copper metal ions into CuO particles, resulting in the CuO@mesoporous SiO2 architecture. The characterization results indicated that the final product basically maintained the original MOF morphology and the mesoporous silica effectively prevented the aggregation of nanoparticles. In addition, the CuO@mesoporous SiO2 exhibited a superior activity for catalyzing the oxidation of styrene, which could be attributed to the fact that the dispersed CuO particles in mesoporous silica provided more accessible catalytic sites and better stability. This work provides a new strategy to prepare nanoparticles@mesoporous silica with adjustable morphology structure, which has a promising potential in the field of heterogeneous catalysis.


Author(s):  
Florian Grassl ◽  
Aladin Ullrich ◽  
Ahmed E. Mansour ◽  
Shaimaa M. Abdalbaqi ◽  
Norbert Koch ◽  
...  

2021 ◽  
Author(s):  
Jamie W. Gittins ◽  
Chloe J. Balhatchet ◽  
Yuan Chen ◽  
Cheng Liu ◽  
David G. Madden ◽  
...  

Two-dimensional electrically conductive metal-organic frameworks (MOFs) have emerged as promising model electrodes for use in electric double-layer capacitors (EDLCs). However, a number of fundamental questions about the behaviour of this class of materials in EDLCs remain unanswered, including the effect of the identity of the metal node and organic linker molecule on capacitive performance and the limitations of current conductive MOFs in these devices relative to traditional activated carbon electrode materials. Herein, we address both these questions via a detailed study of the capacitive performance of the framework Cu<sub>3</sub>(HHTP)<sub>2</sub> (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with an acetonitrile-based electrolyte, finding a specific capacitance of 110 – 114 F g<sup>−1</sup> at current densities of 0.04 – 0.05 A g<sup>−1</sup> and a modest rate capability. By, directly comparing its performance with the previously reported analogue, Ni<sub>3</sub>(HITP)<sub>2</sub> (HITP = 2,3,6,7,10,11-hexaiminotriphenylene), we illustrate that capacitive performance is largely independent of the identity of the metal node and organic linker molecule in these nearly isostructural MOFs. Importantly, this result suggests that EDLC performance in general is uniquely defined by the 3D structure of the electrodes and the electrolyte, a significant finding not demonstrated using traditional electrode materials. Finally, we probe the limitations of Cu<sub>3</sub>(HHTP)<sub>2</sub> in EDLCs, finding a limited cell voltage window of 1.3 V and only a modest capacitance retention of 81 % over 30,000 cycles, both significantly lower than state-of-the-art porous carbons. These important insights will aid the design of future conductive MOFs with greater EDLC performances.


2021 ◽  
Vol 3 ◽  
Author(s):  
Guiliang Li ◽  
Yang Liu ◽  
Yi Shen ◽  
Qile Fang ◽  
Fu Liu

Two-dimensional (2D) metal–organic frameworks (MOFs) have emerged as intriguing 2D materials because of their specific features of 2D morphology and designable skeletons, which have elicited great interest in environment remediation. In this work, 2D MOF nanosheets are fabricated via a mixed-solvent solvothermal method, and a regulation strategy of metal inorganic clusters on MOFs is used to construct two different 2D MOFs with monometallic and bimetallic coordination, that is, Ni-MOF and Ni/Cd-MOF. Binary metal coordination renders more crystal defects and vacancies in the framework; thus, compared to monometallic Ni-MOF, bimetallic Ni/Cd-MOF exhibits fewer layers (4∼5 layers), higher specific surface area, larger pore size, and higher surface electronegativity, which leads to its excellent adsorption removal for Pb2+, with higher adsorption rate and affinity, and superior adsorption capacity (950.61 mg/g, almost twice as high as that of monometallic Ni-MOF). Besides, the adsorption mechanism further confirmed that the carboxyl groups (−COO−) from organic linker on 2D MOFs serve as the main binding sites for Pb2+ coordination, and bimetallic Ni/Cd-MOF has more active −COO− sites for Pb2+ capture. Thus, the bimetallic Ni/Cd-MOF regulated by heterogeneous metal atoms shows promising application for highly efficient adsorption of heavy metal ions.


Sign in / Sign up

Export Citation Format

Share Document