geomagnetic disturbances
Recently Published Documents


TOTAL DOCUMENTS

532
(FIVE YEARS 141)

H-INDEX

32
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-23
Author(s):  
Subrata Kundu ◽  
Swati Chowdhury ◽  
Soujan Ghosh ◽  
Sudipta Sasmal ◽  
Dimitrios Z. Politis ◽  
...  

Atmospheric disturbances caused by seismic activity are a complex phenomenon. The Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) (LAIC) mechanism gives a detailed idea to understand these processes to study the possible impacts of a forthcoming earthquake. The atmospheric gravity wave (AGW) is one of the most accurate parameters for explaining such LAIC process, where seismogenic disturbances can be explained in terms of atmospheric waves caused by temperature changes. The key goal of this work is to study the perturbation in the potential energy associated with stratospheric AGW prior to many large earthquakes. We select seven large earthquakes having Richter scale magnitudes greater than seven ( M > 7.0 ) in Japan (Tohoku and Kumamoto), Mexico (Chiapas), Nepal, and the Indian Ocean region, to study the intensification of AGW using the atmospheric temperature profile as recorded from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite. We observe a significant enhancement in the potential energy of the AGW ranging from 2 to 22 days prior to different earthquakes. We examine the conditions of geomagnetic disturbances, typhoons, and thunderstorms during our study and eliminate the possible contamination due to these events.


2021 ◽  
Author(s):  
Alfredo Behrens ◽  
Kaizô Beltrão ◽  
Agostinho Leite d'Almeida

Background: Homicides are the leading cause of death among young males. Conventional approaches to interpreting variations in criminality over time and across countries have failed to explain it.Methods: We applied ordinary least squared regressions on yearly homicide rates to identify the planetary drivers for homicides in Germany, the UK, and the USA over the past three solar cycles (22 to 24) between 1987 and 2018. We used the number of sunspots (solar activity), Kp and Ap indices (geomagnetic activity) from the National Oceanic and Atmospheric Administration (NOAA) and the German Research Centre for Geosciences DFZ-Potsdam, and weather variables from the countries’ meteorological organizations. Results: Our study revealed that lagged Kp NOAA index as a parameter of solar-driven geomagnetic disturbances (GMD) was the most important predictor to explain homicide rates in all three countries. Our results showed that over half the variance in homicide rates of all three countries could be attributed to GMD, not so by weather variables. We also predicted homicide rates peaking for 2025 and 2026 during the current 25th solar cycle, suggesting the current solar cycle could prove to be one of the most intense in a century, which would signal a concomitant increase in homicide rates. Based on the Italian experience in curbing homicides, we also suggest that collective agency may break what appears to be a deadly association between GMD and homicides.Conclusions: Our study suggests GMD may be involved in shaping human behavior and may help public and medical authorities prepare for eventual surges in homicides as the 25th solar cycle may induce stronger GMD.


2021 ◽  
Vol 19 ◽  
pp. 185-193
Author(s):  
Christoph Jacobi ◽  
Friederike Lilienthal ◽  
Dmitry Korotyshkin ◽  
Evgeny Merzlyakov ◽  
Gunter Stober

Abstract. Observations of upper mesosphere/lower thermosphere (MLT) wind have been performed at Collm (51.3∘ N, 13.0∘ E) and Kazan (56∘ N, 49∘ E), using two SKiYMET all-sky meteor radars with similar configuration. Daily vertical profiles of mean winds and tidal amplitudes have been constructed from hourly horizontal winds. We analyse the response of mean winds and tidal amplitudes to geomagnetic disturbances. To this end, we compare winds and amplitudes for very quiet (Ap ≤ 5) and unsettled/disturbed (Ap ≥ 20) geomagnetic conditions. Zonal winds in both the mesosphere and lower thermosphere are weaker during disturbed conditions for both summer and winter. The summer equatorward meridional wind jet is weaker for disturbed geomagnetic conditions. Tendencies for geomagnetic effects on mean winds over Collm and Kazan qualitatively agree during most of the year. For the diurnal tide, amplitudes in summer are smaller in the mesosphere and greater in the lower thermosphere, but no clear tendency is seen for winter. Semidiurnal tidal amplitudes increase during geomagnetic active days in summer and winter. Terdiurnal amplitudes are slightly reduced in the mesosphere during disturbed days, but no clear effect is visible for the lower thermosphere. Overall, while there is a noticeable effect of geomagnetic variability on the mean wind, the effect on tidal amplitudes, except for the semidiurnal tide, is relatively small and partly different over Collm and Kazan.


2021 ◽  
Author(s):  
Alexander A. Spivak ◽  
Svetlana A. Riabova ◽  
Yaroslav O. Romanovsky

Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 496
Author(s):  
Georgios Balasis ◽  
Angelo De Santis

A systematic multiparametric and multiplatform approach to detect and study geo-space perturbations attributed to preparation processes related to natural hazards is fundamental in order to obtain useful insights on a series of complex dynamic phenomena of the Earth system, namely, earthquakes, volcanic and Saharan dust events, as well as geomagnetic disturbances [...]


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1613
Author(s):  
Helen Mavromichalaki ◽  
Maria-Christina Papailiou ◽  
Maria Gerontidou ◽  
Svetla Dimitrova ◽  
Karel Kudela

It is well known that the various manifestations of space weather can influence a wide range of human activities, from technological systems to human health. Various earlier, as well as more recent multi-disciplinary heliobiological and biometeorological studies have revealed that the human organism is sensitive to environmental physical activity changes and reacts to them through variations of the physiological parameters of the human body. This paper constitutes an overview of the National and Kapodistrian University of Athens investigations in regard to the possible effect of solar, geomagnetic, and cosmic ray activity on human physiological parameters. The Athens Cosmic Ray and Solar Physics Groups collaborated with scientific teams from different countries, statistically processing and analyzing data related to human physiological parameters (such as mean heart rate, arterial systolic, and diastolic pressure), or the number of incidents of different types of cardiac arrhythmias and so forth, in relation to data concerning and describing geomagnetic activity (geomagnetic indices Ap and Dst) and variations in cosmic ray intensity (Forbush decreases and cosmic ray intensity enhancements). In total, four projects were carried out concerning data from different geographical regions (Baku, Azerbaijan; Kosice, Slovakia; Tbilisi, Georgia; Piraeus, Greece), covering different time periods and time scales (daily data or yearly data), and referring to different groups of individuals (selected healthy persons or random persons). The studies concluded with interesting results concerning the possible influence of geomagnetic and cosmic ray activity on the human physiological state.


Author(s):  
Wadih Naim ◽  
Patrik Hilber ◽  
Ebrahim Shayesteh

AbstractCertain rare events can have a drastic impact on power systems. Such events are generally known as high-impact low-probability (HILP) events. It is challenging to predict the occurrence of a HILP event mainly due to lack of data or sparsity and scarcity of data points. Yet, it is essential to implement an evidence-driven asset management strategy. In this paper, event tree analysis is used to assess the risk of power transformer failure due to a geomagnetically induced currents (GIC). Those currents are caused by geomagnetic disturbances in Earth’s magnetic field due to solar activity. To assess the impact on power transformers, an understanding of the mechanism and sequence of sub-events that lead to failure is required to be able to construct an event tree. Based on the constructed event tree, mitigation actions can be derived. GIC blockers or reducers can be used. However, that would require extensive installation and maintenance efforts, and the impact on system reliability has to be studied. Also, such technology is still in its infancy and needs extensive validation. A suggested alternative is to combine early warning data from solar observatories with a load management plan to keep transformers below their rated operation point such that a DC offset due to GIC would not cause magnetic core saturation and overheating. Load management and the risk of early warning false positives can incur a negative effect on reliability. Nevertheless, the risk assessment performed in this paper show that incorporating load management in asset planning is a viable measure that would offset the probability of catastrophic failure.


2021 ◽  
Vol 3 (4) ◽  
pp. 624-632
Author(s):  
Viacheslav V. Krylov

The influence of magnetic fields and natural geomagnetic storms on biological circadian rhythms are actively studied. This study reveals an impact of local natural perturbations in the geomagnetic field that occurred at different times of the day on circadian patterns of locomotor activity of zebrafish. A decrease in zebrafish swimming speed was observed during the geomagnetic disturbances before or after the fluctuations of diurnal geomagnetic variation. However, if the geomagnetic perturbations coincided with the fluctuations of diurnal geomagnetic variation, the decrease in zebrafish swimming speed was insignificant. This result suggests that the biological effects of geomagnetic disturbances may depend on synchronization with the diurnal geomagnetic variation. It implies that the previously published correlations between geomagnetic activity and medical or biological parameters could result from a disruption in circadian biorhythms.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7749
Author(s):  
Irina Zakharenkova ◽  
Iurii Cherniak ◽  
Andrzej Krankowski

The 25–26 August 2018 space weather event occurred during the solar minimum period and surprisingly became the third largest geomagnetic storm of the entire 24th solar cycle. We analyzed the ionospheric response at high latitudes of both hemispheres using multi-site ground-based GNSS observations and measurements onboard Swarm and DMSP satellites. With the storm development, the zones of intense ionospheric irregularities of auroral origin largely expanded in size and moved equatorward towards midlatitudes as far as ~55–60° magnetic latitude (MLAT) in the American, European, and Australian longitudinal sectors. The main ionospheric trough, associated with the equatorward side of the auroral oval, shifted as far equatorward as 45–50° MLAT at both hemispheres. The interhemispheric comparison revealed a high degree of similarity in a large expansion of the auroral irregularities oval towards midlatitudes, in addition to asymmetrical differences in terms of larger intensity of plasma density gradients and structures over the Southern auroral and polar cap regions. Evolution of the intense ionospheric irregularities and equatorward expansion of the auroral irregularities oval were well correlated with increases of geomagnetic activity and peaks of the auroral electrojet index.


Sign in / Sign up

Export Citation Format

Share Document