core flooding
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 133)

H-INDEX

19
(FIVE YEARS 5)

2022 ◽  
Vol 14 (2) ◽  
pp. 986
Author(s):  
Donatus Ephraim Edem ◽  
Muhammad Kabir Abba ◽  
Amir Nourian ◽  
Meisam Babaie ◽  
Zainab Naeem

Salt precipitation during CO2 storage in deep saline aquifers can have severe consequences on injectivity during carbon storage. Extensive studies have been carried out on CO2 solubility with individual or mixed salt solutions; however, to the best of the authors’ knowledge, there is no substantial study to consider pressure decay rate as a function of CO2 solubility in brine, and the range of brine concentration for effective CO2 storage. This study presents an experimental core flooding of the Bentheimer sandstone sample under simulated reservoir conditions to examine the effect of four different types of brine at a various ranges of salt concentration (5 to 25 wt.%) on CO2 storage. Results indicate that porosity and permeability reduction, as well as salt precipitation, is higher in divalent brines. It is also found that, at 10 to 20 wt.% brine concentrations in both monovalent and divalent brines, a substantial volume of CO2 is sequestered, which indicates the optimum concentration ranges for storage purposes. Hence, the magnitude of CO2 injectivity impairment depends on both the concentration and type of salt species. The findings from this study are directly relevant to CO2 sequestration in deep saline aquifers as well as screening criteria for carbon storage with enhanced gas and oil recovery processes.


Author(s):  
Muhammad Aslam Md Yusof ◽  
Yen Adams Sokama Neuyam ◽  
Mohamad Arif Ibrahim ◽  
Ismail M. Saaid ◽  
Ahmad Kamal Idris ◽  
...  

AbstractRe-injection of carbon dioxide (CO2) in deep saline formation is a promising approach to allow high CO2 gas fields to be developed in the Southeast Asia region. However, the solubility between CO2 and formation water could cause injectivity problems such as salt precipitation and fines migration. Although both mechanisms have been widely investigated individually, the coupled effect of both mechanisms has not been studied experimentally. This research work aims to quantify CO2 injectivity alteration induced by both mechanisms through core-flooding experiments. The quantification injectivity impairment induced by both mechanisms were achieved by varying parameters such as brine salinity (6000–100,000 ppm) and size of fine particles (0–0.015 µm) while keeping other parameters constant, flow rate (2 cm3/min), fines concentration (0.3 wt%) and salt type (Sodium chloride). The core-flooding experiments were carried out on quartz-rich sister sandstone cores under a two-step sequence. In order to simulate the actual sequestration process while also controlling the amount and sizes of fines, mono-dispersed silicon dioxide in CO2-saturated brine was first injected prior to supercritical CO2 (scCO2) injection. The CO2 injectivity alteration was calculated using the ratio between the permeability change and the initial permeability. Results showed that there is a direct correlation between salinity and severity of injectivity alteration due to salt precipitation. CO2 injectivity impairment increased from 6 to 26.7% when the salinity of brine was raised from 6000 to 100,000 ppm. The findings also suggest that fines migration during CO2 injection would escalate the injectivity impairment. The addition of 0.3 wt% of 0.005 µm fine particles in the CO2-saturated brine augmented the injectivity alteration by 1% to 10%, increasing with salt concentration. Furthermore, at similar fines concentration and brine salinity, larger fines size of 0.015 µm in the pore fluid further induced up to three-fold injectivity alteration compared to the damage induced by salt precipitation. At high brine salinity, injectivity reduction was highest as more precipitated salts reduced the pore spaces, increasing the jamming ratio. Therefore, more particles were blocked and plugged at the slimmer pore throats. The findings are the first experimental work conducted to validate theoretical modelling results reported on the combined effect of salt precipitation and fines mobilisation on CO2 injectivity. These pioneering results could improve understanding of CO2 injectivity impairment in deep saline reservoirs and serve as a foundation to develop a more robust numerical study in field scale.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Katja E. Schulz ◽  
Kristian Bär ◽  
Ingo Sass

A hydrothermal doublet system was drilled in a fault-related granitic reservoir in Cornwall. It targets the Porthtowan Fault Zone (PTF), which transects the Carnmenellis granite, one of the onshore plutons of the Cornubian Batholith in SW England. At 5058 m depth (TVD, 5275 m MD) up to 190 °C were reached in the dedicated production well. The injection well is aligned vertically above the production well and reaches a depth of 2393 m MD. As part of the design process for potential chemical stimulation of the open-hole sections of the hydrothermal doublet, lab-scale acidification experiments were performed on outcrop analogue samples from the Cornubian Batholith, which include mineralised veins. The experimental setup comprised autoclave experiments on sample powder and plugs, and core flooding tests on sample plugs to investigate to what degree the permeability of natural and artificial (saw-cut) fractures can be enhanced. All samples were petrologically and petrophysically analysed before and after the acidification experiments to track all changes resulting from the acidification. Based on the comparison of the mineralogical composition of the OAS samples with the drill cuttings from the production well, the results can be transferred to the hydrothermally altered zones around the faults and fractures of the PTF. Core Flooding Tests and Autoclave Experiments result in permeability enhancement factors of 4 to >20 and 0.1 to 40, respectively. Mineral reprecipitation can be avoided in the stimulated samples by sufficient post-flushing.


2021 ◽  
Author(s):  
Mohsen Mansouri ◽  
Yaser Ahmadi

Abstract Using nanoparticles for adsorbing asphaltene was known as an efficient method among researchers for crude oil upgrading and in this study, Zeolite-zirconia-copper nanocomposites (NCs) has been synthesized and characterized with SEM, XRD, BET, and EDX for asphaltene precipitation inhibition in the static phase and solving asphaltene deposition problems of dynamic CO2 flooding in low permeability carbonate reservoir. CO2-oil IFT tests, isotherm models, natural depletion tests at static phase were performed in the presence of NCs and the results were compared with zeolite nanoparticles. Then, CO2 core flooding tests at dynamic phase were designed in the presence of NCs at obtained static conditions for surveying permeability/porosity reduction in porous media. After adding NCs and zeolite nanoparticles, the 2nd to 1st slope ratio in CO2-oil IFT tests increased from 19.697 % to 20.895 % and 29.851 %, respectively which shows NCs adsorbed more asphaltene in comparison to zeolite nanoparticles which confirmed UV-Vis results. NCs was decreased asphaltene precipitation more than zeolite at same points during natural depletion tests and it was selected for dynamic CO2 tests. After adding NCs, asphaltene depositions which occurs after CO2 injection was decreased and permeability/porosity reduction parameters were improved.


2021 ◽  
Author(s):  
Brian Chin ◽  
Safdar Ali ◽  
Ashish Mathur ◽  
Colton Barnes ◽  
William Von Gonten

Abstract A big challenge in tight conventional and unconventional rock systems is the lack of representative reservoir deliverability models for movement of water, oil and gas through micro-pore and nano-pore networks. Relative permeability is a key input in modelling these rocks; but due to limitations in core analysis techniques, permeability has become a knob or tuning parameter in reservoir simulation. Current relative permeability measurements on conventional core samples rely on density contrast between oil/water or gas/water on CT (Computed Tomography) scans and recording of effluent volumes to determine relative fluid saturations during the core flooding process. However, tight rocks are characterized by low porosities (< 10 %) and ultra-low permeabilities (< 1 micro-Darcy), that make effective and relative permeability measurements very difficult, time-consuming, and prone to high errors associated with low pore volumes and flow rates. Nuclear Magnetic Resonance (NMR) measurements have been used extensively in the industry to measure fluid porosities, pore size characterization, wettability evaluation, etc. Core NMR scans can provide accurate quantification of pore fluids (oil, gas, water) even in very small quantities, using T2, T1T2 and D-T2 activation sequences. We have developed a novel process to perform experiments that measure effective and relative permeability values on both conventional and tight reservoirs at reservoir conditions while accurately monitoring fluid saturations and fluid fronts in a 12 MHz 3D gradient NMR spectrometer. The experimental process starts by acquiring Micro-CT scans of the cylindrical rock plugs to screen the samples for artifacts or microcracks that may affect permeability measurements. Once the samples are chosen, NMR T2 and T1T2 scans are performed to establish residual fluid saturations in the as-received state. If a liquid effective permeability test is required, the samples are then saturated with the given liquid through a combination of humidification, vacuum-assisted spontaneous imbibition, and saturation under pressure and temperature. After saturation, NMR scans are obtained to verify the volumes of the liquids and determine if the samples have achieved complete saturation. The sample is then loaded into a special core-flooding vessel that is invisible to the NMR spectrometer to minimize interference with the NMR signals from the fluids in the sample. The sample is brought up to reservoir stress and temperature, and the main flowing fluid is injected from one side of the sample while controlling the pressures on the other side of the sample with a back pressure regulator. The saturation front of the injected fluid is continuously monitored using 2D and 3D gradient NMR scans and the volumes of different fluids in the sample are measured using NMR T2 and T1T2 scans. The use of a 12 MHz NMR spectrometer provides very high SNR (signal-to-noise ratio); and clear distinction of water and hydrocarbon signals in the core plug during the entire process. The scanning times are also reduced by orders of magnitude, thereby allowing for more scans to properly capture the saturation front and changes in saturation. Simultaneously, the fluid flowrates and pressures are recorded in order to compute permeability values. The setup is rated to 10,000 psi confining pressures, 9000 psi of pore pressure and a working temperature of up to 100 C. Flowrates as low as 0.00001 cc/min can be recorded. These tests have been done with brine, dead and live crudes, and hydrocarbon gases. The measured relative permeability values have been used successfully in both simulation and production modelling studies in various reservoirs worldwide.


2021 ◽  
Author(s):  
Rezki Oughanem ◽  
Thomas Gumpenberger ◽  
Jean Grégoire Boero-Rollo ◽  
Scherwan Suleiman ◽  
Jalel Ochi ◽  
...  

Abstract A water treatment pilot skid called WaOω has been developed by TotalEnergies to test the efficiency of the centrifugation technology in treating the produced water containing back produced polymer. In case of success, this technology would be implemented on field and the water quality targeted by the technology must allow re-injecting the treated produced water in matrix flow regime for pressure maintain and sweep efficiency. The same interest was expressed by OMV and a partnership project has been built. It was also agreed that OMV builds a second pilot skid called PRT that allows carrying out core flood tests onsite to assess the formation damage and related permeability decline that could be induced by the treated produced water. Both pilot skids have been implemented, connected to each other, and tested during more than one year on the OMV's Matzen oil field nearby Vienna where degraded polymer is already back produced by wells and present in the produced water. More than seventy core flooding tests have been performed in different centrifugation conditions in terms of speed and water qualities, some of them on high permeable sand packs representing the field targeted by TotalEnergies and some others on consolidated sandstone samples of lower permeability representing OMV reservoirs. The effect of adding fresh polymer to the treated produced water for EOR purposes has also been investigated. Some complementary core flood tests have also been performed in TotalEnergies labs using reconstituted sand packs and produced waters with and without polymer to understand the contribution of the degraded polymer alone, the produced water quality alone and both to understand the formation damage and some uncommon results observed with the PRT pilot skid. Core flood tests data often obtained on long injection periods revealed of a high quality, reliable and reproducible. They also showed that even if centrifugation seems to be a good technology, the very clean and transparent water that it delivered induced surprisingly some core permeability declines the origin of which would be discussed in this paper. However, it was clearly established that the presence of degraded polymer has a cleaning effect and limits the formation damage induced by the produced water injected on cores if the Total Suspended Solids in the treated water remains at an acceptable level. Adding fresh polymers limited even more the formation damage because their cleaning effect is more pronounced than with degraded polymer.


2021 ◽  
Author(s):  
Mikhail Bondar ◽  
Andrey Osipov ◽  
Andrey Groman ◽  
Igor Koltsov ◽  
Georgy Shcherbakov ◽  
...  

Abstract EOR technologies in general and surfactant-polymer flooding (SP) in particular is considered as a tertiary method for redevelopment of mature oil fields in Western Siberia, with potential to increase oil recovery to 60-70% OOIP. The selection of effective surfactant blend and a polymer for SP flooding a complex and multi-stage process. The selected SP compositions were tested at Kholmogorskoye oilfield in September-December 2020. Two single well tests with partitioning chemical tracers (SWCTT) and the injectivity test were performed. The surfactant and the polymer for chemical EOR were selecting during laboratory studies. Thermal stability, phase behavior, interfacial tension and rheology of SP formulation were investigated, then a prospective chemical design was developed. Filtration experiments were carried out for optimization of slugs and concentrations. Then SWCTT was used to evaluated residual oil saturation after water flooding and after implementation of chemical EOR in the near wellbore areas. The difference between the obtained values is a measure of the efficiency of surfactant-polymer flooding. Pandemic restriction shifted SWCTT to the period when temperature dropped below zero and suitable for winter conditions equipment was required. Two SWCTT were conducted with same surfactant, but different design of slugs in order to prove technical and economic models of SP-flooding. Long-term polymer injectivity was accessed at the third well. Oil saturation of sandstone reservoir after the injection of a surfactant-polymer solution was reduced about 10% points which is around one third of the residual oil after water flooding. Results were compared with other available data such as well logging, lab core flooding experiments, and hydrodynamic simulation. Modeling of SWCTT is ongoing, current interpretation confirms the increase the oil recovery factor after SP-flooding up to 20-25%, which is a promising result. Temperature model of the bottom hole zone was created and verified. The model predicts that temperature of those zones essentially below that average in the reservoir, which is important for interpretation of tracer test and surfactant efficiency. The tested surfactant showed an acceptable efficiency at under-optimum conditions, which is favorable for application of the SP formulation for neighboring field and layers with different reservoir temperatures, but similar water composition. In general, the results of the conducted field tests correlate with the results of the core experiments for the selected surfactant


2021 ◽  
pp. 127411
Author(s):  
Xiaoqiang Jin ◽  
Cong Chao ◽  
Katriona Edlmann ◽  
Xianfeng Fan
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4212
Author(s):  
Mohamed Said ◽  
Bashirul Haq ◽  
Dhafer Al Shehri ◽  
Mohammad Mizanur Rahman ◽  
Nasiru Salahu Muhammed ◽  
...  

Tertiary oil recovery, commonly known as enhanced oil recovery (EOR), is performed when secondary recovery is no longer economically viable. Polymer flooding is one of the EOR methods that improves the viscosity of injected water and boosts oil recovery. Xanthan gum is a relatively cheap biopolymer and is suitable for oil recovery at limited temperatures and salinities. This work aims to modify xanthan gum to improve its viscosity for high-temperature and high-salinity reservoirs. The xanthan gum was reacted with acrylic acid in the presence of a catalyst in order to form xanthan acrylate. The chemical structure of the xanthan acrylate was verified by FT-IR and NMR analysis. The discovery hybrid rheometer (DHR) confirmed that the viscosity of the modified xanthan gum was improved at elevated temperatures, which was reflected in the core flood experiment. Two core flooding experiments were conducted using six-inch sandstone core plugs and Arabian light crude oil. The first formulation—the xanthan gum with 3% NaCl solution—recovered 14% of the residual oil from the core. In contrast, the modified xanthan gum with 3% NaCl solution recovered about 19% of the residual oil, which was 5% higher than the original xanthan gum. The xanthan gum acrylate is therefore more effective at boosting tertiary oil recovery in the sandstone core.


2021 ◽  
Author(s):  
Xurong Zhao ◽  
Tianbo Liang ◽  
Jingge Zan ◽  
Mengchuan Zhang ◽  
Fujian Zhou ◽  
...  

Abstract Replacing oil from small pores of tight oil-wet rocks relies on altering the rock wettability with the injected fracturing fluid. Among different types of wettability-alteration surfactants, the liquid nanofluid has less adsorption loss during transport in the porous media, and can efficiently alter the rock wettability; meanwhile, it can also maintain a certain oil-water interfacial tension driving the water imbibition. In the previous study, the main properties of a Nonionic nanofluid-diluted microemulsion (DME) were evaluated, and the dispersion coefficient and adsorption rate of DME in tight rock under different conditions were quantified. In this study, to more intuitively show the change of wettability of DME to oil-wet rocks in the process of core flooding experiments and the changes of the water invasion front, CT is used to carry out on-line core flooding experiments, scan and calculate the water saturation in time, and compare it with the pressure drop in this process. Besides, the heterogeneity of rock samples is quantified in this paper. The results show that when the DME is used as the fracturing fluid additive, fingering of the water phase is observed at the beginning of the invasion; compared with brine, the fracturing fluid with DME has deeper invasion depth at the same time; the water invasion front gradually becomes uniform when the DME alters the rock wettability and triggers the imbibition; for tight rocks, DME can enter deeper pores and replace more oil because of its dominance. Finally, the selected nanofluids of DME were tested in two horizontal wells in the field, and their flowback fluids were collected and analyzed. The results show that the average droplet size of the flowback fluids in the wells using DME decreases with production time, and the altered wetting ability gradually returns to the level of the injected fracturing fluid. It can be confirmed that DME can migrate within the tight rock, make the rock surface more water-wet and enhance the imbibition capacity of the fracturing fluid, to reduce the reservoir pressure decline rate and increase production.


Sign in / Sign up

Export Citation Format

Share Document