interplanetary coronal mass ejections
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 62)

H-INDEX

37
(FIVE YEARS 4)

2022 ◽  
Vol 924 (1) ◽  
pp. L6
Author(s):  
Christian Möstl ◽  
Andreas J. Weiss ◽  
Martin A. Reiss ◽  
Tanja Amerstorfer ◽  
Rachel L. Bailey ◽  
...  

Abstract We report the result of the first search for multipoint in situ and imaging observations of interplanetary coronal mass ejections (ICMEs) starting with the first Solar Orbiter (SolO) data in 2020 April–2021 April. A data exploration analysis is performed including visualizations of the magnetic-field and plasma observations made by the five spacecraft SolO, BepiColombo, Parker Solar Probe (PSP), Wind, and STEREO-A, in connection with coronagraph and heliospheric imaging observations from STEREO-A/SECCHI and SOHO/LASCO. We identify ICME events that could be unambiguously followed with the STEREO-A heliospheric imagers during their interplanetary propagation to their impact at the aforementioned spacecraft and look for events where the same ICME is seen in situ by widely separated spacecraft. We highlight two events: (1) a small streamer blowout CME on 2020 June 23 observed with a triple lineup by PSP, BepiColombo and Wind, guided by imaging with STEREO-A, and (2) the first fast CME of solar cycle 25 (≈1600 km s−1) on 2020 November 29 observed in situ by PSP and STEREO-A. These results are useful for modeling the magnetic structure of ICMEs and the interplanetary evolution and global shape of their flux ropes and shocks, and for studying the propagation of solar energetic particles. The combined data from these missions are already turning out to be a treasure trove for space-weather research and are expected to become even more valuable with an increasing number of ICME events expected during the rise and maximum of solar cycle 25.


2021 ◽  
Vol 922 (2) ◽  
pp. 216
Author(s):  
Miho Janvier ◽  
Pascal Démoulin ◽  
Jingnan Guo ◽  
Sergio Dasso ◽  
Florian Regnault ◽  
...  

Abstract Interplanetary coronal mass ejections (ICMEs) are known to modify the structure of the solar wind as well as interact with the space environment of planetary systems. Their large magnetic structures have been shown to interact with galactic cosmic rays (GCRs), leading to the Forbush decrease (FD) phenomenon. We revisit in the present article the 17 yr of Advanced Composition Explorer spacecraft ICME detection along with two neutron monitors (McMurdo and Oulu) with a superposed epoch analysis to further analyze the role of the magnetic ejecta in driving FDs. We investigate in the following the role of the sheath and the magnetic ejecta in driving FDs, and we further show that for ICMEs without a sheath, a magnetic ejecta only is able to drive significant FDs of comparable intensities. Furthermore, a comparison of samples with and without a sheath with similar speed profiles enable us to show that the magnetic field intensity, rather than its fluctuations, is the main driver for the FD. Finally, the recovery phase of the FD for isolated magnetic ejecta shows an anisotropy in the level of the GCRs. We relate this finding at 1 au to the gradient of the GCR flux found at different heliospheric distances from several interplanetary missions.


2021 ◽  
Vol 923 (1) ◽  
pp. 4
Author(s):  
Dan Zhao ◽  
Jianpeng Guo ◽  
Hui Huang ◽  
Haibo Lin ◽  
Yichun Hong ◽  
...  

Abstract The measurements from the Mars Atmosphere and Volatile EvolutioN spacecraft, in orbit around Mars, are utilized to investigate interplanetary coronal mass ejections (ICMEs) near 1.52 au. We identify 24 ICMEs from 2014 December 6 to 2019 February 21. The ICME list is used to examine the statistical properties of ICMEs. On average, the magnetic field strength of 5.99 nT in ICMEs is higher than that of 5.38 nT for stream interaction regions (SIRs). The density of 5.27 cm−3 for ICMEs is quite comparable to that of 5.17 cm−3 for SIRs, the velocity of 394.7 km s−1 for ICMEs is slightly lower than that of 432.8 km s−1 for SIRs, and the corresponding dynamic pressure of 1.34 nPa for ICMEs is smaller than that of 1.50 nPa for SIRs. Using existing databases of ICMEs at 1 au for the same time period, we compare ICME average properties at 1.52 au with those at 1 au. The averages of the characteristic quantities decrease by a factor of 1.1–1.7 from 1 to 1.52 au. In addition, we analyze an unusual space weather event associated with the ICME on 2015 March 9–10, and propose that the extremely strong dynamic pressure with a maximum of ∼18 nPa on March 8 is caused by the combined effects of the enhanced density inside a heliospheric plasma sheet (HPS), the compression of the HPS by the forward shock, and the high velocity of the sheath ahead of the ICME.


2021 ◽  
Vol 923 (2) ◽  
pp. 136
Author(s):  
Emma E. Davies ◽  
Robert J. Forsyth ◽  
Réka M. Winslow ◽  
Christian Möstl ◽  
Noé Lugaz

Abstract We use magnetic field measurements by the Juno spacecraft to catalog and investigate interplanetary coronal mass ejections (ICMEs) beyond 1 au. During its cruise phase, Juno spent about 5 yr in the solar wind between 2011 September and 2016 June, providing measurements of the interplanetary magnetic field (IMF) between 1 and 5.4 au. Juno therefore presents the most recent opportunity for a statistical analysis of ICME properties beyond 1 au since the Ulysses mission (1990–2009). Our catalog includes 80 such ICME events, 32 of which contain associated flux-rope-like structures. We find that the dependency of the mean magnetic field strength of the magnetic flux ropes decreases with heliocentric distance as r −1.24±0.43 between 1 and 5.4 au, in good agreement with previous relationships calculated using ICME catalogs at Ulysses. We combine the Juno catalog with the HELCATS catalog to create a data set of ICMEs covering 0.3–5.4 au. Using a linear regression model to fit the combined data set on a double-logarithmic plot, we find that there is a clear difference between global expansion rates for ICMEs observed at shorter heliocentric distances and those observed farther out beyond 1 au. The cataloged ICMEs at Juno present a good basis for future multispacecraft studies of ICME evolution between the inner heliosphere, 1 au, and beyond.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chenglong Shen ◽  
Yutian Chi ◽  
Mengjiao Xu ◽  
Yuming Wang

The intensity of the southward component of the magnetic field (Bs) carried by Interplanetary Coronal Mass Ejections (ICMEs) is one of the most critical parameters in causing extreme space weather events, such as intense geomagnetic storms. In this work, we investigate three typical ICME events with extremely intense Bs in detail and present a statistical analysis of the origins of intense Bs in different types of ICMEs based on the ICME catalogue from 1995 to 2020. According to the in-situ characteristics, the ICME events with extremely high Bs are classified into three types: isolated ICMEs, multiple ICMEs, and shock-ICME interaction events with shocks inside ICMEs or shocks passing through ICMEs. By analyzing all ICME events with Bs ≥ 10nT and Bs ≥ 20nT, we find that 39.6% of Bs,mean ≥ 10nT events and 50% of Bs,mean ≥ 20nT events are associated with shock-ICME events. Approximately 35.7% of shock-ICME events have Bs,mean ≥ 10nT, which is much higher than the other two types (isoloted ICMEs: 7.2% and multiple ICMEs: 12.1%). Those results confirm that the ICMEs interaction events are more likely to carry extreme intense Bs and cause intense geomagntic storms. Only based on the in-situ observations at Earth, some interaction ICME events, such as shock-ICME interaction events with shocks passing through the preceding ICME or ICME cannibalism, could be classified as isolated ICME events. This may lead to an overestimate of the probability of ICME carrying extremely intense Bs. To further investigate such events, direct and multi-point observations of the CME propagation in the inner heliosphere from the Solar Ring Mission could be crucial in the future.


2021 ◽  
Vol 217 (8) ◽  
Author(s):  
Nariaki V. Nitta ◽  
Tamitha Mulligan ◽  
Emilia K. J. Kilpua ◽  
Benjamin J. Lynch ◽  
Marilena Mierla ◽  
...  

AbstractGeomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cannot be traced back to an observed CME, or, if the CME is identified, its origin may be elusive or ambiguous in coronal images. Such CMEs have been termed “stealth CMEs”. In this review, we focus on these “problem” geomagnetic storms in the sense that the solar/CME precursors are enigmatic and stealthy. We start by reviewing evidence for stealth CMEs discussed in past studies. We then identify several moderate to strong geomagnetic storms (minimum Dst $< -50$ < − 50  nT) in solar cycle 24 for which the related solar sources and/or CMEs are unclear and apparently stealthy. We discuss the solar and in situ circumstances of these events and identify several scenarios that may account for their elusive solar signatures. These range from observational limitations (e.g., a coronagraph near Earth may not detect an incoming CME if it is diffuse and not wide enough) to the possibility that there is a class of mass ejections from the Sun that have only weak or hard-to-observe coronal signatures. In particular, some of these sources are only clearly revealed by considering the evolution of coronal structures over longer time intervals than is usually considered. We also review a variety of numerical modelling approaches that attempt to advance our understanding of the origins and consequences of stealthy solar eruptions with geoeffective potential. Specifically, we discuss magnetofrictional modelling of the energisation of stealth CME source regions and magnetohydrodynamic modelling of the physical processes that generate stealth CME or CME-like eruptions, typically from higher altitudes in the solar corona than CMEs from active regions or extended filament channels.


2021 ◽  
Vol 921 (1) ◽  
pp. 93
Author(s):  
Yeimy J. Rivera ◽  
Susan T. Lepri ◽  
John C. Raymond ◽  
Katharine K. Reeves ◽  
Michael L. Stevens ◽  
...  

2021 ◽  
Author(s):  
Christos Katsavrias ◽  
Afroditi Nasi ◽  
Ioannis A. Daglis ◽  
Sigiava Aminalragia-Giamini ◽  
Nourallah Dahmen ◽  
...  

Abstract. Radial diffusion has been established as one of the most important mechanisms contributing to both the acceleration and loss of relativistic electrons in the outer radiation belt. In the framework of the SafeSpace project we have used 9 years (2011–2019) of multi-point magnetic and electric field measurements from THEMIS A, D and E satellites to create a database of accurately calculated radial diffusion coefficients (DLL) spanning an L* range from 3 to 8. In this work we investigate the dependence of the DLL on the various solar wind parameters, geomagnetic indices and coupling functions, and moreover, on the spatial parameters L* and Magnetic Local Time (MLT), during the solar cycle 24. The spatial distribution of the DLL reveals important MLT dependence rising from the various Ultra Low Frequency (ULF) wave generation mechanisms. Furthermore, we investigate via a superposed analysis, the dependence of the DLL on solar wind drivers. We show that the Interplanetary Coronal Mass Ejections (ICME) driven disturbances accompanied by high solar wind pressure values combined with intense magnetospheric compression produce DLLB  values comparable or even greater than the ones of DLLE. This feature cannot be captured by semi-empirical models and introduces a significant energy dependence on the DLL. Finally, we show the advantages of the use of accurately calculated DLL by means of numerical simulations of relativistic electron fluxes performed with the Salammbô code and significant deviations of several semi-empirical model predictions depending on the level of geomagnetic activity and L-shell.


2021 ◽  
Author(s):  
Mark Lester ◽  
Beatriz Sanchez-Cano ◽  
Hermann Opgenoorth

&lt;p&gt;Large scale solar wind disturbances such as Interplanetary Coronal Mass Ejections (ICMEs) have a major impact on planetary systems.&amp;#160; At Mars, for example, Solar Energetic Particles released during the process that creates the ICME cause large scale radar blackouts as a result of enhanced ionisation at lower altitudes than normal.&amp;#160; The increased absorption of the radar signals can last for up to 10 &amp;#8211; 12 days, depending on the operational frequency of the radar.&amp;#160; These events occur at all latitudes and local times but there does appear to be a peak in occurrence at a solar zenith angle of about 160o, i.e. deep in the tail of the Martian plasma system. Using data from MAVEN, Mars Express and Mars Reconnaissance Orbiter we investigate the background plasma&amp;#160; and magnetic field conditions, which occur at the same time as these events to investigate how the SEP impact on the nightside atmosphere.&amp;#160; This will provide crucial evidence for plasma transport in the Martian system, in particular during the passage of ICMEs.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document