necrotic enteritis
Recently Published Documents


TOTAL DOCUMENTS

638
(FIVE YEARS 225)

H-INDEX

56
(FIVE YEARS 8)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 100
Author(s):  
Raveendra R. Kulkarni ◽  
Carissa Gaghan ◽  
Javid Mohammed

The present study evaluated the avian macrophage responses against Clostridium perfringens that varied in their ability to cause necrotic enteritis in chickens. Strains CP5 (avirulent-netB+), CP1 (virulent-netB+), and CP26 (highly virulent-netB+tpeL+) were used to evaluate their effect on macrophages (MQ-NCSU cells) and primary splenic and cecal tonsil mononuclear cells. The bacilli (whole cells) or their secretory products from all three strains induced a significant increase in the macrophage transcription of Toll-like receptor (TLR)21, TLR2, interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), and CD80 genes as well as their nitric oxide (NO) production and major histocompatibility complex (MHC)-II surface expression compared to an unstimulated control. The CP1 and CP26-induced expression of interferon (IFN)γ, IL-6, CD40 genes, MHC-II upregulation, and NO production was significantly higher than that of CP5 and control groups. Furthermore, splenocytes and cecal tonsillocytes stimulated with bacilli or secretory products from all the strains showed a significant increase in the frequency of macrophages, their surface expression of MHC-II and NO production, while CP26-induced responses were significantly higher for the rest of the groups. In summary, macrophage interaction with C. perfringens can lead to cellular activation and, the ability of this pathogen to induce macrophage responses may depend on its level of virulence.


2022 ◽  
Vol 10 (1) ◽  
pp. 152
Author(s):  
Nuria Vieco-Saiz ◽  
Yanath Belguesmia ◽  
Ruth Raspoet ◽  
Eric Auclair ◽  
Connor Padgett ◽  
...  

The present study aimed to show the benefits of novel lactic acid bacteria (LAB) strains isolated from the caeca of healthy chickens. These novel strains, identified as Limosilactobacillus reuteri and Ligilactobacillus salivarius, displayed high levels of lactic acid production, capability of biofilm formation, high aggregation and adhesion scores, and significant survival rates under conditions mimicking the chicken gastrointestinal tract (GIT). In addition, these novel Lactobacillaceae isolates were neither hemolytic nor cytotoxic. In vivo trials were able to establish their ability to reduce necrotic enteritis. Notably, a significant weight gain was registered, on day 10 of treatment, in the group of chickens fed with a mixture of L. reuteri ICVB416 and L. salivarius ICVB430 strains, as compared with the control group. This group has also shown a reduced number of lesions in the gut compared with other infected chicken groups. This study provides in vitro and in vivo evidence supporting the benefits of these novel Lactobacillaceae isolates for their use in poultry livestock as protective cultures to control the bacterial necrotic enteritis (NE) Clostridium perfringens.


2022 ◽  
pp. 101726
Author(s):  
Sarah J.M. Zaytsoff ◽  
Valerie F. Boras ◽  
Richard R.E. Uwiera ◽  
G. Douglas Inglis

Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 61
Author(s):  
Kyung-Woo Lee ◽  
Hyun S. Lillehoj

Necrotic enteritis (NE) is a devastating enteric disease caused by Clostridium perfringens type A/G that impacts the global poultry industry by compromising the performance, health, and welfare of chickens. Coccidiosis is a major contributing factor to NE. Although NE pathogenesis was believed to be facilitated by α-toxin, a chromosome-encoded phospholipase C enzyme, recent studies have indicated that NE B-like (NetB) toxin, a plasmid-encoded pore-forming heptameric protein, is the primary virulence factor. Since the discovery of NetB toxin, the occurrence of NetB+ C. perfringens strains has been increasingly reported in NE-afflicted poultry flocks globally. It is generally accepted that NetB toxin is the primary virulent factor in NE pathogenesis although scientific evidence is emerging that suggests other toxins contribute to NE. Because of the complex nature of the host-pathogen interaction in NE pathogenesis, the interaction of NetB with other potential virulent factors of C. perfringens needs better characterization. This short review will summarize the primary virulence factors involved in NE pathogenesis with an emphasis on NetB toxin, and a new detection method for large-scale field screening of NetB toxin in biological samples from NE-afflicted commercial broiler flocks.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Xiaolu Jin ◽  
Guanggen Huang ◽  
Zheng Luo ◽  
Yongfei Hu ◽  
Dan Liu

Oregano (Origanum vulgare L.) is a well-known traditional medicine and a cooking spice. Recent practice has also applied the essential oil from oregano (OEO) in poultry due to its great potential for an antibiotic alternative. Our objective was to evaluate the potential effects of OEO (with carvacrol and thymol as the main active ingredient) on preventing necrotic enteritis (NE) caused by Clostridium perfringens (Cp) in chickens. In the feeding trial, a total of 450 one-day-old commercial Arbor Acres broilers were randomly assigned in 5 experimental groups during a 26-day production period (d19 to d 26 was the Cp challenge stage), and each group consisted of 6 replicate pens (15 birds each pen). All treatments were: basal diet (control group); basal diet and Cp challenge (model group); Cp challenge and 10 mg/kg enramycin (positive control group); Cp challenge and 200 mg/kg OEO product (OEO low dosage group, OEOL); Cp challenge and 300 mg/kg OEO product (OEO high dosage group, OEOH). OEO feed supplement at both dosages had significant effects on increasing the body weight gain (BWG) and reversing the dropped feed intake (FI) induced by Cp challenge. Histopathological changes in the ileums of broiler chickens with NE induced by Cp were alleviated by OEO, which was mutually confirmed by the intestinal lesion scores. Dosage did not influence the protective effect of OEO on intestinal lesion scores. Furthermore, OEO was found to have limited effects on tight junction-related gene expressions (Occludin and ZO-1). The broilers of the OEOL and OEOH groups significantly decreased the expression of TNF-α mRNA in the ileum and only the OEOH group was found to inhibit the IFN-γ expression of IFN- induced by Cp challenge. Finally, despite the fact that in vitro antibacterial effects by OEO were observed, considering its high minimum inhibitory concentration (MIC) value, we inferred that the protective effects by OEO against Cp challenge were not attributable to its direct antibacterial effects. We proposed OEO as a promising substitute for antibiotics against NE induced by Cp during poultry production.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hendrikus J. Wijnen ◽  
Carla W. van der Pol ◽  
Inge A. M. van Roovert-Reijrink ◽  
Joren De Smet ◽  
Aart Lammers ◽  
...  

Resilient animals can cope with environmental disturbances in life with minimal loss of function. Resilience can be enhanced by optimizing early-life conditions. In poultry, eggshell temperature (EST) during incubation and early feeding are two early-life conditions that are found to alter neonatal chick quality as well as immune response in later life. However, whether these early-life conditions affect disease resilience of chickens at later ages has never been studied yet. Hence, we studied the effects of EST [(37.8°C (control) or 36.7°C (lower)] during late incubation (≥embryonic days 17–19.5) and feeding strategy after hatch [immediately (early feeding) or 51–54 h delayed (delayed feeding)] on later-life broiler resilience in a 2 × 2 factorial arrangement. At hatch, 960 broilers of both sexes from a 54-week-old Ross breeder flock were equally divided over 32 pens (eight replicate pens per treatment combination) and grown for 6 weeks. Necrotic enteritis was induced by a single inoculation of Eimeria spp. at d 21 and repeated Clostridium perfringens inoculation (3×/d) during d 21–25. Mortality and body weight (BW) gain were measured daily during d 21–35 as indicators of resilience. Additionally, disease morbidity was assessed (gut lesions, dysbacteriosis, shedding of oocysts, footpad dermatitis, and natural antibody levels in blood). Results showed a lack of interaction between EST and feeding strategy for the vast majority of the variables. A lower EST resulted in lower BW gain at d 5 and 8 post Eimeria inoculation (P = 0.02) and more Eimeria maxima oocysts in feces at d 8 post Eimeria inoculation compared to control EST (P < 0.01). Early feeding tended to lower mortality compared to delayed feeding (P = 0.06), but BW gain was not affected by feeding strategy. Morbidity characteristics were hardly affected by EST or feeding strategy. In conclusion, a few indications were found that a lower EST during late incubation as well as delayed feeding after hatch may each impair later-life resilience to necrotic enteritis. However, these findings were not manifested consistently in all parameters that were measured, and conclusions are drawn with some restraint.


2021 ◽  
Vol 8 ◽  
Author(s):  
Luis-Miguel Gomez-Osorio ◽  
Veronica Yepes-Medina ◽  
Anne Ballou ◽  
Manuela Parini ◽  
Roselina Angel

The use of antibiotic growth promoters (AGPs) has historically been the most important prophylactic strategy for the control of Necrotic Enteritis (NE) caused by some Clostridium perfringens toxin types in poultry. During the last five decades, AGPs have also been supplemented in feed to improve body weight gain and feed efficiency as well as to modulate the microbiome (consisting of microbes and their genes both beneficial and potentially harmful) and reduce enteric pathogens, among other benefits. New regulatory requirements and consumer preferences have led to strong interest in natural alternatives to the AGPs for the prevention and control of illnesses caused by enteric pathogens. This interest is not just focused on the direct removal or inhibition of the causative microorganisms but also the improvement of intestinal health and homeostasis using a range of feed additives. A group of promising feed additives is short- and medium-chain fatty acids (SCFA and MCFA, respectively) and their derivatives. The use of SCFA and MCFA, including butyric, caproic, caprylic, capric, and lauric acids, has shown strong effects against NE in broilers both at experimental and commercial levels. These fatty acids also benefit intestinal health integrity and homeostasis. Other effects have also been documented, including increases in intestinal angiogenesis and gene expression of tight junctions. Chemical modifications to improve stability and point of release in the intestine have been shown to improve the efficacy of SCFA and MCFA and their derivatives. The aim of this review is to give an overview of SCFA, MCFA and their derivatives, as an alternative to replace AGPs to control the incidence and severity of NE in poultry.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1607
Author(s):  
Mingmin Lu ◽  
Baohong Yuan ◽  
Xianghe Yan ◽  
Zhifeng Sun ◽  
Hyun S. Lillehoj ◽  
...  

Clostridium perfringens is an important opportunistic pathogen that may result in toxin-mediated diseases involving food poisoning/tissue gangrene in humans and various enterotoxaemia in animal species. It is a main etiological agent for necrotic enteritis (NE), the most financially devastating bacterial disease in broiler chickens, especially if raised under antibiotic-free conditions. Importantly, NE is responsible for losses of six billion US dollars annually in the global poultry industry. To investigate the molecular mechanisms of C. perfringens-induced pathogenesis in the gut and its microbiome mRNA levels in C. perfringens-infected and non-infected hosts, we used RNA sequencing technology to perform transcriptional analysis of both host intestine and microbiome using our NE model. The growth rate was significantly impaired in chickens infected by C. perfringens. In total, 13,473 annotated chicken genes were differentially expressed between these two groups, with ninety-six genes showing statistical significance (|absolute fold changes| > 2.0, adjusted p value < 0.05). Genes involved in energy production, MHC Class I antigen, translation, ribosomal structures, and amino acid, nucleotide and carbohydrate metabolism from infected gut tissues were significantly down-regulated. The upregulated genes were mainly engaged in innate and adaptive immunity, cellular processes, genetic information processing, and organismal systems. Additionally, the transcriptional levels of four crucial foodborne pathogens were significantly elevated in a synergic relationship with pathogenic C. perfringens infection. This study presents the profiling data that would likely be a relevant reference for NE pathogenesis and may provide new insights into the mechanism of host-pathogen interaction in C. perfringens-induced NE infection in broiler chickens.


Sign in / Sign up

Export Citation Format

Share Document