brownian dynamics simulation
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 21)

H-INDEX

41
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0245405
Author(s):  
Emiko Zumbro ◽  
Alfredo Alexander-Katz

Multivalent polymers are a key structural component of many biocondensates. When interacting with their cognate binding proteins, multivalent polymers such as RNA and modular proteins have been shown to influence the liquid-liquid phase separation (LLPS) boundary to both control condensate formation and to influence condensate dynamics after phase separation. Much is still unknown about the function and formation of these condensed droplets, but changes in their dynamics or phase separation are associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s Disease. Therefore, investigation into how the structure of multivalent polymers relates to changes in biocondensate formation and maturation is essential to understanding and treating these diseases. Here, we use a coarse-grain, Brownian Dynamics simulation with reactive binding that mimics specific interactions in order to investigate the difference between non-specific and specific multivalent binding polymers. We show that non-specific binding interactions can lead to much larger changes in droplet formation at lower protein-polymer interaction energies than their specific, valence-limited counterparts. We also demonstrate the effects of solvent conditions and polymer length on phase separation, and we present how modulating binding energy to the polymer can change the organization of a droplet in a three component system of polymer, binding protein, and solvent. Finally, we compare the effects of surface tension and polymer binding on the condensed phase dynamics, and show that both lower protein solubilities and higher attraction/affinity of the protein to the polymer result in slower droplet dynamics. This research will help to better understand experimental systems and provides additional insight into how multivalent polymers can control LLPS.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253684
Author(s):  
Evgeniy V. Ulyanov ◽  
Dmitrii S. Vinogradov ◽  
J. Richard McIntosh ◽  
Nikita B. Gudimchuk

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Swarnadeep Seth ◽  
Aniket Bhattacharya

AbstractThe potential of a double nanopore system to determine DNA barcodes has been demonstrated experimentally. By carrying out Brownian dynamics simulation on a coarse-grained model DNA with protein tag (barcodes) at known locations along the chain backbone, we demonstrate that due to large variation of velocities of the chain segments between the tags, it is inevitable to under/overestimate the genetic lengths from the experimental current blockade and time of flight data. We demonstrate that it is the tension propagation along the chain’s backbone that governs the motion of the entire chain and is the key element to explain the non uniformity and disparate velocities of the tags and DNA monomers under translocation that introduce errors in measurement of the length segments between protein tags. Using simulation data we further demonstrate that it is important to consider the dynamics of the entire chain and suggest methods to accurately decipher barcodes. We introduce and validate an interpolation scheme using simulation data for a broad distribution of tag separations and suggest how to implement the scheme experimentally.


2021 ◽  
Vol 65 (3) ◽  
pp. 337-354
Author(s):  
Young Jin Lee ◽  
Howon Jin ◽  
Sunhyung Kim ◽  
Jin Suk Myung ◽  
Kyung Hyun Ahn

Author(s):  
JAE HWAN JEONG ◽  
Young Ki Lee ◽  
Kyung Ahn

We investigate the drying process of monodisperse colloidal film over a wide range of Péclet number (Pe) by using the Brownian dynamics simulation. We analyze the detailed process in three aspects; accumulation front, normal stress, and microstructure. The evolution of particle distribution is quantified by tracking the accumulation front. The accumulated particles contribute to the continuous increase of the normal stress at the interface. At the substrate, the normal stress first stays constant and then increases as the accumulation front touches the substrate. We quantitatively analyze the stress development by a scaled normal stress difference between the two boundaries. At all tested Pe, the stress difference increases to the maximum, followed by a decrease during drying. Interestingly, a mismatch is observed between the stress difference maximum and the initial stress increase at the substrate. The microstructural analysis reveals that this mismatch is related to the microstructural development at the substrate.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247022
Author(s):  
Evgeniy V. Ulyanov ◽  
Dmitrii S. Vinogradov ◽  
J. Richard McIntosh ◽  
Nikita B. Gudimchuk

Electron cryo-microscopy (Cryo-EM) is a powerful method for visualizing biological objects with up to near-angstrom resolution. Instead of chemical fixation, the method relies on very rapid freezing to immobilize the sample. Under these conditions, crystalline ice does not have time to form and distort structure. For many practical applications, the rate of cooling is fast enough to consider sample immobilization instantaneous, but in some cases, a more rigorous analysis of structure relaxation during freezing could be essential. This difficult yet important problem has been significantly under-reported in the literature, despite spectacular recent developments in Cryo-EM. Here we use Brownian dynamics modeling to examine theoretically the possible effects of cryo-immobilization on the apparent shapes of biological polymers. The main focus of our study is on tubulin protofilaments. These structures are integral parts of microtubules, which in turn are key elements of the cellular skeleton, essential for intracellular transport, maintenance of cell shape, cell division and migration. We theoretically examine the extent of protofilament relaxation within the freezing time as a function of the cooling rate, the filament’s flexural rigidity, and the effect of cooling on water’s viscosity. Our modeling suggests that practically achievable cooling rates are not rapid enough to capture tubulin protofilaments in conformations that are incompletely relaxed, suggesting that structures seen by cryo-EM are good approximations to physiological shapes. This prediction is confirmed by our analysis of curvatures of tubulin protofilaments, using samples, prepared and visualized with a variety of methods. We find, however, that cryofixation may capture incompletely relaxed shapes of more flexible polymers, and it may affect Cryo-EM-based measurements of their persistence lengths. This analysis will be valuable for understanding of structures of different types of biopolymers, observed with Cryo-EM.


Soft Matter ◽  
2021 ◽  
Author(s):  
Francis Jose ◽  
Shalabh K. Anand ◽  
Sunil P. Singh

We present the Brownian dynamics simulation of an active colloidal suspension in two dimensions, where the self-propulsion speed of a colloid is regulated according to the local density sensed by it.


RSC Advances ◽  
2021 ◽  
Vol 11 (34) ◽  
pp. 20781-20787
Author(s):  
Swarnadeep Seth ◽  
Aniket Bhattacharya

We report a method for DNA barcoding from the dwell time measurement of protein tags (barcodes) along the DNA backbone using Brownian dynamics simulation of a model DNA and use a recursive scheme to improve the measurements to almost 100% accuracy.


Sign in / Sign up

Export Citation Format

Share Document