extraterrestrial life
Recently Published Documents


TOTAL DOCUMENTS

446
(FIVE YEARS 97)

H-INDEX

22
(FIVE YEARS 3)

Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Victor R. Alekseev ◽  
Jiang-Shiou Hwang ◽  
Margarita A. Levinskikh

This work is a review of the experiments carried out in the Russian segment of the ISS (inside and outside) from 2005 to 2016 on the effect of the space flight factor on the resting stages of organisms. In outer space, ultraviolet, a wide range of high and low temperatures, cosmic radiation, altered gravity, modified electromagnetic field, vacuum, factors of technical origin, ultrasound, microwave radiation, etc. and their combination determine the damaging effect on living organisms. At the same time, biological dormancy, known in a wide range of bacteria, fungi, animals and plants, allows them to maintain the viability of their dormant stages in extreme conditions for a long time, which possibly allows them to survive during space flight. From 2005 to 2016, the resting stages (propagules) of micro- and multicellular organisms were tested on the ISS to assess their ability to survive after prolonged exposure to the conditions of open space and space flight. Among the more than 40 species studied, about a third were dormant stages of aquatic organisms (eggs of cyprinodont fish, daphnia embryos, resting eggs of fairy shrimps, tadpole shrimps, copepods and ostracods, diapausing larvae of dipterans, as well as resting cysts of algae). The experiments were carried out within the framework of four research programs: (1) inside the ISS with a limited set of investigated species (Akvarium program); (2) outside the station in outer space without exposure to ultraviolet radiation (Biorisk program); (3) under modified space conditions simulating the surface of Mars (Expose program); and (4) in an Earth-based laboratory where single-factor experiments were carried out with neutron radiation, modified magnetic field, microwave radiation and ultrasound. Fundamentally new data were obtained on the stability of the resting stages of aquatic organisms exposed to the factors of the space environment, which modified the idea of the possibility of bringing Earth life forms to other planets with spacecraft and astronauts. It also can be used for creating an extraterrestrial artificial ecosystem and searching for extraterrestrial life.


2021 ◽  
Vol 13 (24) ◽  
pp. 5097
Author(s):  
Michael T. Bland ◽  
Randolph L. Kirk ◽  
Donna M. Galuszka ◽  
David P. Mayer ◽  
Ross A. Beyer ◽  
...  

Jupiter’s moon Europa harbors one of the most likely environments for extant extraterrestrial life. Determining whether Europa is truly habitable requires understanding the structure and thickness of its ice shell, including the existence of perched water or brines. Stereo-derived topography from images acquired by NASA Galileo’s Solid State Imager (SSI) of Europa are often used as a constraint on ice shell structure and heat flow, but the uncertainty in such topography has, to date, not been rigorously assessed. To evaluate the current uncertainty in Europa’s topography we generated and compared digital terrain models (DTMs) of Europa from SSI images using both the open-source Ames Stereo Pipeline (ASP) software and the commercial SOCET SET® software. After first describing the criteria for assessing stereo quality in detail, we qualitatively and quantitatively describe both the horizontal resolution and vertical precision of the DTMs. We find that the horizontal resolution of the SOCET SET® DTMs is typically 8–11× the root mean square (RMS) pixel scale of the images, whereas the resolution of the ASP DTMs is 9–13× the maximum pixel scale of the images. We calculate the RMS difference between the ASP and SOCET SET® DTMs as a proxy for the expected vertical precision (EP), which is a function of the matching accuracy and stereo geometry. We consistently find that the matching accuracy is ~0.5 pixels, which is larger than well-established “rules of thumb” that state that the matching accuracy is 0.2–0.3 pixels. The true EP is therefore ~1.7× larger than might otherwise be assumed. In most cases, DTM errors are approximately normally distributed, and errors that are several times the derived EP occur as expected. However, in two DTMs, larger errors (differences) occur and correlate with real topography. These differences primarily result from manual editing of the SOCET SET® DTMs. The product of the DTM error and the resolution is typically 4–8 pixel2 if calculated using the RMS image scale for SOCET SET® DTMs and the maximum images scale for the ASP DTMs, which is consistent with recent work using martian data sets and suggests that the relationship applies more broadly. We evaluate how ASP parameters affect DTM quality and find that using a smaller subpixel refinement kernel results in DTMs with smaller (better) resolution but, in some cases, larger gaps, which are sometimes reduced by increasing the size of the correlation kernel. We conclude that users of ASP should always systematically evaluate the choice of parameters for a given dataset.


Author(s):  
Hitesh G. Changela ◽  
Elias Chatzitheodoridis ◽  
Andre Antunes ◽  
David Beaty ◽  
Kristian Bouw ◽  
...  

Abstract Mars exploration motivates the search for extraterrestrial life, the development of space technologies, and the design of human missions and habitations. Here, we seek new insights and pose unresolved questions relating to the natural history of Mars, habitability, robotic and human exploration, planetary protection, and the impacts on human society. Key observations and findings include: – high escape rates of early Mars' atmosphere, including loss of water, impact present-day habitability; – putative fossils on Mars will likely be ambiguous biomarkers for life; – microbial contamination resulting from human habitation is unavoidable; and – based on Mars' current planetary protection category, robotic payload(s) should characterize the local martian environment for any life-forms prior to human habitation. Some of the outstanding questions are: – which interpretation of the hemispheric dichotomy of the planet is correct; – to what degree did deep-penetrating faults transport subsurface liquids to Mars' surface; – in what abundance are carbonates formed by atmospheric processes; – what properties of martian meteorites could be used to constrain their source locations; – the origin(s) of organic macromolecules; – was/is Mars inhabited; – how can missions designed to uncover microbial activity in the subsurface eliminate potential false positives caused by microbial contaminants from Earth; – how can we ensure that humans and microbes form a stable and benign biosphere; and – should humans relate to putative extraterrestrial life from a biocentric viewpoint (preservation of all biology), or anthropocentric viewpoint of expanding habitation of space? Studies of Mars' evolution can shed light on the habitability of extrasolar planets. In addition, Mars exploration can drive future policy developments and confirm (or put into question) the feasibility and/or extent of human habitability of space.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yosef Ashkenazy ◽  
Eli Tziperman

AbstractThe deep (~100 km) ocean of Europa, Jupiter’s moon, covered by a thick icy shell, is one of the most probable places in the solar system to find extraterrestrial life. Yet, its ocean dynamics and its interaction with the ice cover have received little attention. Previous studies suggested that Europa’s ocean is turbulent using a global model and taking into account non-hydrostatic effects and the full Coriolis force. Here we add critical elements, including consistent top and bottom heating boundary conditions and the effects of icy shell melting and freezing on ocean salinity. We find weak stratification that is dominated by salinity variations. The ocean exhibits strong transient convection, eddies, and zonal jets. Transient motions organize in Taylor columns parallel to Europa’s axis of rotation, are static inside of the tangent cylinder and propagate equatorward outside the cylinder. The meridional oceanic heat transport is intense enough to result in a nearly uniform ice thickness, that is expected to be observable in future missions.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 411
Author(s):  
Vasily N. Lednev ◽  
Alexey F. Bunkin ◽  
Sergey M. Pershin ◽  
Mikhail Ya. Grishin ◽  
Diana G. Artemova ◽  
...  

The laser induced fluorescence spectroscopy was systematically utilized for remote sensing of different soils and rocks for the first time, to the best of our knowledge. Laser induced fluorescence spectroscopy measurements were carried out by the developed nanosecond LIDAR instrument with variable excitation wavelength (355, 532 and 1064 nm). LIDAR sensing of different Brazil soil samples have been carried out in order to construct a spectral database. The laser induced fluorescence spectra interpretation for different samples has been discussed in detail. The perspectives of LIDAR sensing of organic samples deposited at soils and rock have been discussed including future space exploration missions in the search for extraterrestrial life.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11784
Author(s):  
Andrea Baucon ◽  
Carlos Neto de Carvalho ◽  
Antonino Briguglio ◽  
Michele Piazza ◽  
Fabrizio Felletti

Ichnofossils, the fossilized products of life-substrate interactions, are among the most abundant biosignatures on Earth and therefore they may provide scientific evidence of potential life that may have existed on Mars. Ichnofossils offer unique advantages in the search for extraterrestrial life, including the fact that they are resilient to processes that obliterate other evidence for past life, such as body fossils, as well as chemical and isotopic biosignatures. The goal of this paper is evaluating the suitability of the Mars 2020 Landing Site for ichnofossils. To this goal, we apply palaeontological predictive modelling, a technique used to forecast the location of fossil sites in uninvestigated areas on Earth. Accordingly, a geographic information system (GIS) of the landing site is developed. Each layer of the GIS maps the suitability for one or more ichnofossil types (bioturbation, bioerosion, biostratification structures) based on an assessment of a single attribute (suitability factor) of the Martian environment. Suitability criteria have been selected among the environmental attributes that control ichnofossil abundance and preservation in 18 reference sites on Earth. The goal of this research is delivered through three predictive maps showing which areas of the Mars 2020 Landing Site are more likely to preserve potential ichnofossils. On the basis of these maps, an ichnological strategy for the Perseverance rover is identified, indicating (1) 10 sites on Mars with high suitability for bioturbation, bioerosion and biostratification ichnofossils, (2) the ichnofossil types, if any, that are more likely to be present at each site, (3) the most efficient observation strategy for detecting eventual ichnofossils. The predictive maps and the ichnological strategy can be easily integrated in the existing plans for the exploration of the Jezero crater, realizing benefits in life-search efficiency and cost-reduction.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Aaron Sidder

New research finds that Actinobacteria in lava caves fix carbon and survive independent of surface inputs, offering a fresh perspective in the search for life beyond Earth.


2021 ◽  
Vol 118 (37) ◽  
pp. e2106197118
Author(s):  
James S. New ◽  
Bahar Kazemi ◽  
Vassilia Spathis ◽  
Mark C. Price ◽  
Richard A. Mathies ◽  
...  

Enceladus, an icy moon of Saturn, is a compelling destination for a probe seeking biosignatures of extraterrestrial life because its subsurface ocean exhibits significant organic chemistry that is directly accessible by sampling cryovolcanic plumes. State-of-the-art organic chemical analysis instruments can perform valuable science measurements at Enceladus provided they receive sufficient plume material in a fly-by or orbiter plume transit. To explore the feasibility of plume sampling, we performed light gas gun experiments impacting micrometer-sized ice particles containing a fluorescent dye biosignature simulant into a variety of soft metal capture surfaces at velocities from 800 m ⋅ s−1 up to 3 km ⋅ s−1. Quantitative fluorescence microscopy of the capture surfaces demonstrates organic capture efficiencies of up to 80 to 90% for isolated impact craters and of at least 17% on average on indium and aluminum capture surfaces at velocities up to 2.2 km ⋅ s−1. Our results reveal the relationships between impact velocity, particle size, capture surface, and capture efficiency for a variety of possible plume transit scenarios. Combined with sensitive microfluidic chemical analysis instruments, we predict that our capture system can be used to detect organic molecules in Enceladus plume ice at the 1 nM level—a sensitivity thought to be meaningful and informative for probing habitability and biosignatures.


Sign in / Sign up

Export Citation Format

Share Document