link length
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 40)

H-INDEX

18
(FIVE YEARS 1)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Rahul Kumar ◽  
Amandeep Singh Sappal

Abstract Optical communication systems introduced paradigm shift in the forte of data transmission at higher speeds and over longer distances where, on contrary electrical transmission systems failed due to higher amplitude degradation, interferences and lower bandwidths. However, pulse width increase (PWI) in the optical fiber limits the overall distance reach and also introduces more bit errors which needs to addressed. So far, pulse width shortening fibers (PFs) and fiber Bragg grating (FG) used individually in most of the reported studies, however pulse width shortening (PWS) took either high cost (in PFs) or lower PWS efficiency (PWSE) (in FG). Therefore, in this research manuscript, we made emphasis on the combined PWS effects of diverse techniques such as optical phase conjugation (OC), FG and PFs in ultra-dense wavelength division multiplexing (WDM) system. Total link length of 400 km has been covered in 128 channels ultra dense wavelength division multiplexing (UDWDM) system at 10 Gbps by incorporating diverse combined organized placements of FG, OC and PFs such as FG-PF, OC-PF and FG-PF-OC. Results revealed that economical and maximum PWSE arrangement for proposed system is FG-PF-OC.


Robotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 12
Author(s):  
Takuya Otani ◽  
Atsuo Takanishi ◽  
Makoto Nakamura ◽  
Koichi Kimura

In recent years, the teleoperation of robots has become widespread in practical use. However, in some current modes of robot operation, such as leader-follower control, the operator must use visual information to recognize the physical deviation between him/herself and the robot, and correct the operation instructions sequentially, which limits movement speed and places a heavy burden on the operator. In this study, we propose a leader-follower control parameter optimization method for the feedforward correction necessitated by deviations in the link length between the robot and the operator. To optimize the parameters, we used the Digital Annealer developed by Fujitsu Ltd., which can solve the combinatorial optimization problem at high speed. The main objective was to minimize the difference between the hand coordinates target and the actual hand position of the robot. In simulations, the proposed method decreased the difference between the hand position of the robot and the target. Moreover, this method enables optimum operation, in part by eliminating the need for the operator to maintain an unreasonable posture, as in some robots the operator’s hand position is unsuitable for achieving the objective.


2021 ◽  
Author(s):  
◽  
Mohammed Daher

<p>In this thesis we study the special Euclidean group SE(3) from two points of view, algebraic and geometric. From the algebraic point of view we introduce a dualisation procedure for SO(3;ℝ) invariants and obtain vector invariants of the adjoint action of SE(3) acting on multiple screws. In the case of three screws there are 14 basic vector invariants related by two basic syzygies. Moreover, we prove that any invariant of the same group under the same action can be expressed as a rational function evaluated on those 14 vector invariants.  From the geometric point of view, we study the Denavit-Hartenberg parameters used in robotics, and calculate formulae for link lengths and offsets in terms of vector invariants of the adjoint action of SE(3). Moreover, we obtain a geometrical duality between the offsets and the link lengths, where the geometrical dual of an offset is a link length and vice versa.</p>


2021 ◽  
Author(s):  
◽  
Mohammed Daher

<p>In this thesis we study the special Euclidean group SE(3) from two points of view, algebraic and geometric. From the algebraic point of view we introduce a dualisation procedure for SO(3;ℝ) invariants and obtain vector invariants of the adjoint action of SE(3) acting on multiple screws. In the case of three screws there are 14 basic vector invariants related by two basic syzygies. Moreover, we prove that any invariant of the same group under the same action can be expressed as a rational function evaluated on those 14 vector invariants.  From the geometric point of view, we study the Denavit-Hartenberg parameters used in robotics, and calculate formulae for link lengths and offsets in terms of vector invariants of the adjoint action of SE(3). Moreover, we obtain a geometrical duality between the offsets and the link lengths, where the geometrical dual of an offset is a link length and vice versa.</p>


2021 ◽  
Vol 53 (5) ◽  
pp. 210508
Author(s):  
Suresh Kumar ◽  
Payal Payal

The MIMO based CO-OFDM FSO communication system is emerging as a promising approach to meet the future bandwidth requirements for seamless communication. The atmosphere being the propagation medium is a major hindrance in wide-scale acceptability of FSO technology. For seamless and error-free transmission and reception of data, a novel concept of MIMO integrated with RS code is proposed in this paper. The system performance of an RS 64 (RS (255,127)) coded MIMO-based CO-OFDM FSO communication link was investigated using BPSK, QPSK and 16-QAM under the combined effects of geometric losses, path losses and atmospheric attenuations at a hitherto un-investigated data rate of 40 Gbps and a link distance of 5 km. The modified gamma-gamma distribution was used for modeling a moderately turbulent channel. With link length varying over a range of 1 to 5 km, error correction was maximum in 16-QAM as compared to BPSK and QPSK, with 150 to 167 corrected errors. In terms of PAPR, PSK was more apt than QAM, but with a compromise in BER. The geometric losses were reduced with link length due to an increase in error correction capability for all three modulation cases, with the least losses occurring in 16-QAM. At the target bit error rate (BER), the signal to noise ratio (SNR) required for BPSK and QPSK was higher by 3.98 dB and 6.14 dB compared to 16-QAM.


2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110524
Author(s):  
Marko Penčić ◽  
Maja Čavić ◽  
Dragana Oros ◽  
Dijana Čavić ◽  
Marko Orošnjak ◽  
...  

Part II presents the structural design of a high-capacity adjustable stacker mechanism for thermoforming machines which enables the receival, transport and stacking of cup-like products. It was previously established (please see Part I) that a four-bar linkage mechanism with a one-way clutch is the optimal solution for realizing the intermittent motion of the stacker conveyor. The main objective here is to enable the change of the stacker work parameters, with the goal of changing and adjusting the work stroke of the conveyor. Accordingly, there are two main requirements the solution needs to fulfill. The first is that of the regulation characteristic’s function – the relationship between the change of the work stroke and the change of the regulation parameter, must be linear, and the second is that it allows for regulation within a wide range. Due to this, the adopted solution proposed that two links have variable lengths. The input link should have discreet length values which correspond to different values of the conveyor work stroke, while the output link length should be continuously variable, within a narrow range thus ensuring linear regulation characteristic. Finally, it should be noted that this solution makes the stacker compatible with a wide array of products, which increases the productivity and flexibility, adjusting the stacker to receive a different product can be done quickly and easily and avoiding a halt in the production as it takes less time to adjust the stacker than the thermoforming machine.


Author(s):  
J.M. Mom ◽  
◽  
S.S. Tyokighir ◽  
G.A. Igwue ◽  
◽  
...  

Performance evaluation of the ITU-R. P.530-17, Ghiani and Budalal model are considered for this work. It is found that the predicted values from the ITU-R and Ghiani distance factor models are seen to gradually decrease with an increase in path length for distances below 1km. Results further suggest that for a link length of 300 m, the Ghiani model predicts a 0.2499 dB (1.059 w) to 0.3273 dB (1.078 w) precipitation loss across all four (4) stations. For the ITU-R. P.530-17 model, a 3.4741 dB (2.225 w) to 5.329 dB (3.411 w) precipitation loss is estimated across all stations while the Budalal model estimated a 2.8608 dB (1.932 w) to 4.6250 dB (2.901 w) precipitation loss across all stations. The ITU-R. P.530-17, Ghiani and Budalal model further suggest a precipitation loss in the Received Signal Strength (RSS) of a typical 5G base station operating in the four (4) stations considered to be at least -9.4733 dBm, -8.8601 dBm, and -6.2489 dBm respectively. Generally, all models are found to predict rain attenuation and distance factor values with disparities especially for link lengths above 300 m. Further research is recommended on the models for accurate prediction and improve agreement with measured values.


2021 ◽  
Author(s):  
Keisuke Arikawa

Abstract Depending on their mobilities around bond axes, molecules (e.g., proteins, DNA, and RNA) can be modeled as robotic manipulators. We focus on the serial 6R fragments, or the fragments containing six revolute joints connected in series, extracted from these molecules. We solved the inverse kinematics problems of the fragments. We obtained multiple conformations that maintained the relative position and orientation between both ends. Raghavan and Roth’s solution effectively conveys all real solutions. However, the solution is not directly applicable when some link lengths are zeros. To cope with the problem, in addition to the known method based on the modified elimination, we introduced the small-length link strategy. Here, by setting sufficiently small values for the zero-length links, we solved the inverse kinematics problems based on Raghavan and Roth’s solution combined with the symbolic formulation. Moreover, we formulated a method to systematically build manipulator models from structural data of molecules. We systematically identified the Danavit-Hartenberg parameters (link length, offset, and twist angle) and joint angles at the conformation in the structural data from the seven pairs of positions of atoms. Finally, using the structural data of a protein stored in the protein data bank, we demonstrated an application example of kinematic modeling and inverse kinematics calculation.


2021 ◽  
Author(s):  
valarmathi marudhai ◽  
Shanthi Prince ◽  
Shayna Kumari

Abstract With the latest technological advancements and attractive features of next generation intelligent optical networks such as high bandwidth, low power consumption, and low transmission loss, etc., they have been considered as most viable solution to satisfy promptly growing bandwidth demands. However, main optical network components bring forth a set of security challenges and reliability issues, accompanied by new vulnerabilities within the network. This paper proposes a new design for an optical encryption and decryption method for enhancing optical network security using p-i-n photodiode which generates Pseudo Random Binary Sequence (PRBS) as a shot noise fluctuations and wavelength converter based design using Semiconductor Optical Amplifier (SOA) based XOR gate which utilizes Cross-Phase Modulation (XPM). The system performance based on Bit Error Rate (BER) and Q factor are analyzed at different data rates for different link lengths up to 100 km using OptiSystem. It is observed that error free transmission with a BER of 10-12 is achieved a data rate of 10Gbps for a link length of only 30 Km for the system with PIN photodiode’s shot noise being used for PRBS sequence generation. However, wavelength conversion based system enables transmission of signal at 10Gbps signal up to a link length of 90Km.


2021 ◽  
Vol 11 (8) ◽  
pp. 3548
Author(s):  
Daniel Huczala ◽  
Tomáš Kot ◽  
Martin Pfurner ◽  
Dominik Heczko ◽  
Petr Oščádal ◽  
...  

Researchers often deal with the synthesis of the kinematic structure of a robotic manipulator to determine the optimal manipulator for a given task. This approach can lower the cost of the manipulator and allow it to achieve poses that might be unreachable by universal manipulators in an existing constrained environment. Numerical methods are broadly used to find the optimum design but they often require an estimated initial kinematic structure as input, especially if local-optimum-search algorithms are used. This paper presents four different algorithms for such an estimation using the standard Denavit–Hartenberg convention. Two of the algorithms are able to reach a given position and the other two can reach both position and orientation using Bézier splines approximation and vector algebra. The results are demonstrated with three chosen example poses and are evaluated by measuring manipulability and the total link length of the final kinematic structures.


Sign in / Sign up

Export Citation Format

Share Document