gas dynamics equations
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 44)

H-INDEX

12
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Mohammed Kbiri Alaoui ◽  
F. M. Alharbi ◽  
Shamsullah Zaland

The present article correlates with a fuzzy hybrid technique combined with an iterative transformation technique identified as the fuzzy new iterative transform method. With the help of Atangana-Baleanu under generalized Hukuhara differentiability, we demonstrate the consistency of this method by achieving fuzzy fractional gas dynamics equations with fuzzy initial conditions. The achieved series solution was determined and contacted the estimated value of the suggested equation. To confirm our technique, three problems have been presented, and the results were estimated in fuzzy type. The lower and upper portions of the fuzzy solution in all three examples were simulated using two distinct fractional orders between 0 and 1. Because the exponential function is present, the fractional operator is nonsingular and global. It provides all forms of fuzzy solutions occurring between 0 and 1 at any fractional-order because it globalizes the dynamical behavior of the given equation. Because the fuzzy number provides the solution in fuzzy form, with upper and lower branches, fuzziness is also incorporated in the unknown quantity. It is essential to mention that the projected methodology to fuzziness is to confirm the superiority and efficiency of constructing numerical results to nonlinear fuzzy fractional partial differential equations arising in physical and complex structures.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 123
Author(s):  
Renata Nikonorova ◽  
Dilara Siraeva ◽  
Yulia Yulmukhametova

In this paper, exact solutions with a linear velocity field are sought for the gas dynamics equations in the case of the special state equation and the state equation of a monatomic gas. These state equations extend the transformation group admitted by the system to 12 and 14 parameters, respectively. Invariant submodels of rank one are constructed from two three-dimensional subalgebras of the corresponding Lie algebras, and exact solutions with a linear velocity field with inhomogeneous deformation are obtained. On the one hand of the special state equation, the submodel describes an isochoric vortex motion of particles, isobaric along each world line and restricted by a moving plane. The motions of particles occur along parabolas and along rays in parallel planes. The spherical volume of particles turns into an ellipsoid at finite moments of time, and as time tends to infinity, the particles end up on an infinite strip of finite width. On the other hand of the state equation of a monatomic gas, the submodel describes vortex compaction to the origin and the subsequent expansion of gas particles in half-spaces. The motion of any allocated volume of gas retains a spherical shape. It is shown that for any positive moment of time, it is possible to choose the radius of a spherical volume such that the characteristic conoid beginning from its center never reaches particles outside this volume. As a result of the generalization of the solutions with a linear velocity field, exact solutions of a wider class are obtained without conditions of invariance of density and pressure with respect to the selected three-dimensional subalgebras.


Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Valeriy Nikonov

One of the most important and complex effects in compressible fluid flow simulation is a shock-capturing mechanism. Numerous high-resolution Euler-type methods have been proposed to resolve smooth flow scales accurately and to capture the discontinuities simultaneously. One of the disadvantages of these methods is a numerical viscosity for shocks. In the shock, the flow parameters change abruptly at a distance equal to the mean free path of a gas molecule, which is much smaller than the cell size of the computational grid. Due to the numerical viscosity, the aforementioned Euler-type methods stretch the parameter change in the shock over few grid cells. We introduce a semi-Lagrangian Godunov-type method without numerical viscosity for shocks. Another well-known approach is a method of characteristics that has no numerical viscosity and uses the Riemann invariants or solvers for water hammer phenomenon modeling, but in its formulation the convective terms are typically neglected. We use a similar approach to solve the one-dimensional adiabatic gas dynamics equations, but we split the equations into parts describing convection and acoustic processes separately, with corresponding different time steps. When we are looking for the solution to the one-dimensional problem of the scalar hyperbolic conservation law by the proposed method, we additionally use the iterative Godunov exact solver, because the Riemann invariants are non-conserved for moderate and strong shocks in an ideal gas. The proposed method belongs to a group of particle-in-cell (PIC) methods; to the best of the author’s knowledge, there are no similar PIC numerical schemes using the Riemann invariants or the iterative Godunov exact solver. This article describes the application of the aforementioned method for the inviscid Burgers’ equation, adiabatic gas dynamics equations, and the one-dimensional scalar hyperbolic conservation law. The numerical analysis results for several test cases (e.g., the standard shock-tube problem of Sod, the Riemann problem of Lax, the double expansion wave problem, the Shu–Osher shock-tube problem) are compared with the exact solution and Harten’s data. In the shock for the proposed method, the flow properties change instantaneously (with an accuracy dependent on the grid cell size). The iterative Godunov exact solver determines the accuracy of the proposed method for flow discontinuities. In calculations, we use the iteration termination condition less than 10−5 to find the pressure difference between the current and previous iterations.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042092
Author(s):  
V F Lapshin

Abstract The paper considers the possibility of using a pulsed discharge in cesium as an environmentally friendly high quality light source for lighting industrial premises of railway transport facilities. The use of cesium filling of standard sapphire burners of high-pressure sodium lamps and a pulsed mode of electric power supply of the discharge to create a light source has been substantiated. A mathematical model of a high-pressure pulsed discharge in cesium is formulated on the basis of the radiative gas dynamics equations. The discharge was simulated and it was shown that it is possible to create a plasma with a temperature 4000 -7000 K and a pressure of 0.5 - 1.5 at m with the power supplied to the discharge ∼ 100 W/cm in the steady-state combustion mode. The dependence of the discharge lighting characteristics on the amplitude of the current pulses and the amount of cesium in the gas discharge tube is analyzed. It is shown that in a wide range of currents and plasma densities, the color rendering index of the discharge radiation Ra> 95 with luminous efficacy ηV ∼ 70lm/W and more. The average luminous flux emitted per unit length of the discharge column is ∼ 104 lm/cm. The color temperature of the discharge radiation can vary over a wide range of values Tc∼ 3000÷4500 K. It is shown that the color coordinates Xc,Yc of discharge radiation are close to the values Xc,Yc of a blackbody. The use of such a source in conditions of a short daylight hours will make it possible to create practically solar illumination of large production areas.


Author(s):  
Сергей Петрович Баутин ◽  
Сергей Львович Дерябин

Построение в физическом пространстве решения задачи о распаде специального разрыва, т.е. трехмерных изэнтропических течений политропного газа, возникающих после мгновенного разрушения в начальный момент времени непроницаемой стенки, отделяющей неоднородный движущийся газ от вакуума. В задаче учитывается действие силы тяжести и силы Кориолиса. В систему уравнений газовой динамики введена автомодельная особенность в переменную, которая выводит с поверхности раздела. Для полученной системы поставлена задача Коши с данными на звуковой характеристике. Решение задачи строилось в виде степенных рядов. Часть коэффициентов рядов определялась при решении алгебраических уравнений, а часть из решений - обыкновенных дифференциальных уравнений. Методом мажорант доказана сходимость построенных рядов. Построенное решение позволяет задавать начальные условия для разностной схемы при численном моделировании решений данной характеристической задачи Коши The aim of this study is to construct a solution to the problem of the decay of a special discontinuity in physical space. The problem reduces to finding of three-dimensional isentropic flows of a polytropic gas that occur after the instantaneous destruction of an impermeable wall separating an inhomogeneous moving gas from a vacuum at the initial moment of time. The problem takes into account the forces of gravity and Coriolis. Research methods. In the system of gas dynamics equations, a self-similar feature is introduced in a variable that outputs from the initial interface. For the resulting system, the Cauchy problem is formulated using conditions on the sound characteristic. The solution to this problem is constructed in the form of power series. The coefficients of the series are partly determined by solving algebraic equations, another part can be found as solutions of ordinary differential equations. The convergence of the constructed series is proved by the Majorant method The results obtained in the work. In the form of a convergent power series, solutions to the problem of the decay of a special discontinuity in physical space are constructed. Conclusions. The solution constructed in physical space allows setting the initial conditions for the numerical simulation of this characteristic Cauchy problem using a difference scheme.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012017
Author(s):  
D Siraeva

Abstract In this article, the gas dynamics equations with an equation of state of the special form are considered.The equation of state is the pressure which is equal to the sum of two functions, with one being a function of a density, and the other one being a function of an entropy. The system of equations is invariant under the action of 12-parameter transformations group. For three-dimensional subalgebra 3.32 of the 12-dimensional Lie algebra invariants are calculated, an invariant submodel of rank 1 is constructed, and two families of exact solutions are obtained. The obtained solutions specify the motion of particles in space with a linear velocity field with inhomogeneous deformation. The first family of solutions has two moments of time of particles collapse. The second family of solutions has one moment of time of particles collapse on the plane. In the simplest case of second family of solutions, a surface consisting of particle trajectories is constructed.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1735
Author(s):  
Shuang-Shuang Zhou ◽  
Nehad Ali Shah ◽  
Ioannis Dassios ◽  
S. Saleem ◽  
Kamsing Nonlaopon

This article introduces two well-known computational techniques for solving the time-fractional system of nonlinear equations of unsteady flow of a polytropic gas. The methods suggested are the modified forms of the variational iteration method and the homotopy perturbation method by the Elzaki transformation. Furthermore, an illustrative scheme is introduced to verify the accuracy of the available techniques. A graphical representation of the exact and derived results is presented to show the reliability of the suggested approaches. It is also shown that the findings of the current methodology are in close harmony with the exact solutions. The comparative solution analysis via graphs also represents the higher reliability and accuracy of the current techniques.


2021 ◽  
pp. 1-12
Author(s):  
Ismatolo Ramazanovich Khaytaliev ◽  
Evgeny Vladimirovich Shilnikov

The accuracy and stability of an explicit numerical algorithm for modeling the flows of a mixture of compressible gases in the transonic regime are investigated by the example of solving the Riemann problem on the decay of a gas-dynamic discontinuity between different gases. The algorithm is constructed using the finite volume method based on the regularized gas dynamics equations for a mixture of gases. A method for suppressing nonphysical oscillations occurring behind the contact discontinuity is found.


Sign in / Sign up

Export Citation Format

Share Document