particle volume
Recently Published Documents


TOTAL DOCUMENTS

631
(FIVE YEARS 137)

H-INDEX

40
(FIVE YEARS 7)

2022 ◽  
Vol 933 ◽  
Author(s):  
Kristin N. Travis ◽  
Sarah E. Smith ◽  
Laure Vignal ◽  
Henda Djeridi ◽  
Mickaël Bourgoin ◽  
...  

This study presents the findings of a wind tunnel experiment investigating the behaviour of micrometric inertial particles with Stokes numbers around unity in the turbulent wake of a stationary porous disk. Various concentrations $\varPhi _{v}\in ([6-19] \times 10^{-6})$ of poly-disperse water droplets (average diameter 40–50  $\mathrm {\mu }$ m) are compared with sub-inertial tracer particles. Hot-wire anemometry, phase Doppler interferometry and particle image velocimetry were implemented in the near- and far-wake regions to study the complex dynamics of such particles. Quadrant analysis is used to explore the shear effects of the particle wake interaction. Turbulence statistics and particle size distributions reveal distinct differences in the structure of the wake when inertial particles are present in the flow. Additionally, there are different structures in the near and far wake regions and structures change with particle volume fraction.


2021 ◽  
Vol 11 (1) ◽  
pp. 158-166
Author(s):  
Jun Qiu ◽  
Yiping Luo ◽  
Yuqing Li ◽  
Jiao Luo ◽  
Zhibin Su ◽  
...  

Abstract In this paper, the chain structure of magnetorheological fluid (MRF) magnetic particles was studied and analyzed, the mechanical model of MRF with different diameter ferromagnetic particles was established, silicone oil-based MRF with different particle volume fractions was prepared, the shear properties of the MRF were tested, and the theoretical and experimental data were compared. The experimental results show that the shear stress is stable with the increase of shear strain rate under the action of the magnetic field, and it has a shear thinning effect. The shear stress increases linearly with the increase of particle volume fraction. The shear stress increases with the increase of magnetic induction intensity. After data analysis and in the case of control variables, the average error of improved theoretical data and experimental data is lower than that of previous theoretical data and experimental data, which verifies that the improved theory (mechanical model) has a certain accuracy.


CFD Letters ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 21-31
Author(s):  
Basuki Widodo ◽  
Adhi Surya Nugraha ◽  
Dieky Adzkiya ◽  
Mohd Zuki Salleh

The study of simulation and applications of mathematics in fluid dynamics continues to grow along with the development of computer science and technology. One of them is Magnetohydrodynamics (MHD) which is closely related to its implementation in engineering and industry. And given the importance of magnetic fluid flow has attracted researchers to study and explore its benefits and uses in the industrial field, especially in convective flow and heat transfer processes. This paper therefore considers mathematical modeling on mixed convection MHD viscous fluid flow on the lower stagnation point of a magnetic sliced sphere. The study began with transforming the governing equations which are in dimensional partial differential equations to non-dimensional ordinary differential equations by using the similarity variable. The resulting similarity equations are then solved by the Keller-Box scheme. The characteristics and effects of the Prandtl number, the sliced angle, the magnetic parameter, and the mixed convection parameter are analyzed and discussed. The results depicted that the uniform magnetic field produced by Lorentz force and slicing on the sphere act as determining factors for the trend of nano fluid movement and controlling the cooling rate of the sphere surface. In addition, the viscosity depends on the copper particle volume fraction.


Author(s):  
A. Zeeshan ◽  
F. Bashir ◽  
F. Alzahrani

Electrokinetic microperistaltic pumps are important biomechanical devices, helps in targeted drugging of sick body parts. The current article is written to focus on mathematical modelling and analysis of some important aspect of such flows in a channel with complex wave. It is considered that solid partilcle are uniformly distributed in the flow and these particle are non-conducting. Parameters such as Particle volume fraction coefficient, Electro-osmotic parameter and Helmholtz-Smoluchowski parameter are specially been focused in this study. Spherical shaped equally sized are uniformly floated in a non-Newtonian Powell-Eyring base fluid. The defined flow problem is modelled and analyzed analytically for the transport of solid liquid suspension. It is accepted that the flow is steady, nonturbulent and propagating waves do have a considerably longer wave-length when compared to amplitude. The conditions and assumptions lead to a model of coupled partial differential equations of order two. The exact results by HPM expansion method are procured and shown accordingly. The predictions about the behaviour of important appearing parameters are displayed using figures. The impact of sundry parameters are analyzed. The application of current study involved transporting/ targeted drug delivery system using Peristaltic micropumps and magnetic field in pharmacological engineering of biofluids like blood.


Author(s):  
J. Vogt ◽  
H. Friedrich ◽  
M. Stepanyan ◽  
C. Eckardt ◽  
M. Lam ◽  
...  

AbstractAdditive Manufacturing (AM) of ceramics is a constantly emerging field of interest both in research and in industry. Binder jetting-based AM of ceramics in particular offers the opportunity to produce large ceramic parts with a high wall thickness at a high throughput. One limitation is that it requires flowable powders, which are generally coarse and thus exhibit only limited sintering activity. The resulting low sintered densities impede the commercial binder jetting-based production of dense oxide ceramics. We present an approach to efficiently increase the green density of binder jetted alumina parts by optimized slurry infiltration, which also leads to a significant increase in the sintered density. In a first step, alumina parts were fabricated via binder jetting, using a 20-µm-sized alumina powder, yielding relative green densities of about 47–49%. Initial sintering studies with powder compacts showed that sintering even above 1900 °C is not sufficient to achieve acceptable densification. Therefore, green samples were infiltrated with a highly filled ceramic slurry to fill the remaining pores (about 2–5 µm in size) with smaller particles and thus increase the packing density. Particle volume content (40–50 vol%), particle size (100–180 nm) and the infiltration procedure were adapted for tests on cuboid samples to achieve a high penetration of the green bodies and a high degree of pore filling. In this way, the relative green density could be increased starting from about 47% after binder jetting, to 73.4% after infiltration and drying. After sintering at 1675 °C densities above 90% could be achieved, yielding three-point bending strengths up to 145 MPa. As a conclusion, this approach can be regarded as a promising route for overcoming the drawbacks of the binder jetting process on the way to denser, mechanically more stable sintered alumina parts.


Author(s):  
Lili Fan

Abstract The existing research on magnetorheological elastomer (MRE) mainly focused on the improvement of MRE formula and structural design of MRE devices. As to the microscopic mechanism, less research has been done. Based on the scanning electron micrograph (SEM) of MRE, a novel chain-cluster model of MRE was constructed in this study. Particle size and particle distance were introduced simultaneously to the constitutive relation of MRE. The dynamic mechanical properties of MRE are studied theoretically and experimentally. Using the constructed chain-cluster model of MRE, the effect of magnetic field, particle volume fraction and strain on the magnetic-induced modulus of MRE were simulated. Rotating rheometer was adopted to test the magnetic response characteristics of MREs. Simulation and test results showed that the maximum magnetic-induced modulus tested experimentally was in good agreement with that calculated theoretically. Thus, the constructed chain-cluster model of MRE shows an important role in the field of intelligent vibration. It not only makes great sense in the prediction of MRE property but provides guidance on the property improvement of MRE.


2021 ◽  
Vol 932 ◽  
Author(s):  
Christoph Rettinger ◽  
Sebastian Eibl ◽  
Ulrich Rüde ◽  
Bernhard Vowinckel

Classical scaling relationships for rheological quantities such as the $\mu (J)$ -rheology have become increasingly popular for closures of two-phase flow modelling. However, these frameworks have been derived for monodisperse particles. We aim to extend these considerations to sediment transport modelling by using a more realistic sediment composition. We investigate the rheological behaviour of sheared sediment beds composed of polydisperse spherical particles in a laminar Couette-type shear flow. The sediment beds consist of particles with a diameter size ratio of up to 10, which corresponds to grains ranging from fine to coarse sand. The data was generated using fully coupled, grain resolved direct numerical simulations using a combined lattice Boltzmann–discrete element method. These highly resolved data yield detailed depth-resolved profiles of the relevant physical quantities that determine the rheology, i.e. the local shear rate of the fluid, particle volume fraction, total shear and granular pressure. A comparison against experimental data shows excellent agreement for the monodisperse case. We improve upon the parameterization of the $\mu (J)$ -rheology by expressing its empirically derived parameters as a function of the maximum particle volume fraction. Furthermore, we extend these considerations by exploring the creeping regime for viscous numbers much lower than used by previous studies to calibrate these correlations. Considering the low viscous numbers of our data, we found that the friction coefficient governing the quasi-static state in the creeping regime tends to a finite value for vanishing shear, which decreases the critical friction coefficient by a factor of three for all cases investigated.


2021 ◽  
Author(s):  
Ruifeng CAO ◽  
Taotao WANG ◽  
Yuxuan ZHANG ◽  
Hui WANG

Improved heat transfer in composites consisting of guar gel matrix and randomly distributed glass microspheres is extensively studied to predict the effective thermal conductivity of composites using the finite element method. In the study, the proper and probabilistic three-dimensional random distribution of microspheres in the continuous matrix is automatically generated by a simple and efficient random sequential adsorption algorithm which is developed by considering the correlation of three factors including particle size, number of particles, and particle volume fraction controlling the geometric configuration of random packing. Then the dependences of the effective thermal conductivity of composite materials on some important factors are investigated numerically, including the particle volume fraction, the particle spatial distribution, the number of particles, the nonuniformity of particle size, the particle dispersion morphology and the thermal conductivity contrast between particle and matrix. The related numerical results are compared with theoretical predictions and available experimental results to assess the validity of the numerical model. These results can provide good guidance for the design of advanced microsphere reinforced composite materials.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012003
Author(s):  
M.A. Nikishina

Abstract In this paper, an analytical solution to the model of the evolution of ellipsoidal crystals with fluctuating growth rates at the intermediate step of bulk phase transition is presented. A complete system of integrodifferential equations describing the problem was derived and analytically solved using the Laplace integral method. The kinetics of supercooling removal in melts has been found. The particle-volume distribution function represents a pike-shaped curve decreasing its maximum with time. It is demonstrated the differences in the distribution function for ellipsoidal and spherical crystals.


2021 ◽  
Vol 2142 (1) ◽  
pp. 012014
Author(s):  
S P Pronin ◽  
E S Kononova

Abstract The article presents the results of laboratory studies of the effect of volume concentration of suspended particles in contrast to the luminous slits image obtained by smartphone cameras of SAMSUNG Galaxy A3 and Honor 8 Lite. Experimentally it was found that a pattern of change in contrast to the luminous slits image from the volumetric concentration of suspended particles appears under ambient light. The pattern of contrast change can be expressed by an exponential function. The correlation coefficient is 0.97. Cigarette smoke was used as suspended particles.


Sign in / Sign up

Export Citation Format

Share Document