frontal eye field
Recently Published Documents


TOTAL DOCUMENTS

542
(FIVE YEARS 80)

H-INDEX

84
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Maxwell Shinn ◽  
Daeyeol Lee ◽  
John D. Murray ◽  
Hyojung Seo

AbstractIn noisy but stationary environments, decisions should be based on the temporal integration of sequentially sampled evidence. This strategy has been supported by many behavioral studies and is qualitatively consistent with neural activity in multiple brain areas. By contrast, decision-making in the face of non-stationary sensory evidence remains poorly understood. Here, we trained monkeys to identify and respond via saccade to the dominant color of a dynamically refreshed bicolor patch that becomes informative after a variable delay. Animals’ behavioral responses were briefly suppressed after evidence changes, and many neurons in the frontal eye field displayed a corresponding dip in activity at this time, similar to that frequently observed after stimulus onset but sensitive to stimulus strength. Generalized drift-diffusion models revealed consistency of behavior and neural activity with brief suppression of motor output, but not with pausing or resetting of evidence accumulation. These results suggest that momentary arrest of motor preparation is important for dynamic perceptual decision making.


2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Lorenzo Diana ◽  
Giulia Scotti ◽  
Edoardo N. Aiello ◽  
Patrick Pilastro ◽  
Aleksandra K. Eberhard-Moscicka ◽  
...  

Transcranial Direct Current Stimulation (tDCS) has been employed to modulate visuo-spatial attentional asymmetries, however, further investigation is needed to characterize tDCS-associated variability in more ecological settings. In the present research, we tested the effects of offline, anodal conventional tDCS (Experiment 1) and HD-tDCS (Experiment 2) delivered over the posterior parietal cortex (PPC) and Frontal Eye Field (FEF) of the right hemisphere in healthy participants. Attentional asymmetries were measured by means of an eye tracking-based, ecological paradigm, that is, a Free Visual Exploration task of naturalistic pictures. Data were analyzed from a spatiotemporal perspective. In Experiment 1, a pre-post linear mixed model (LMM) indicated a leftward attentional shift after PPC tDCS; this effect was not confirmed when the individual baseline performance was considered. In Experiment 2, FEF HD-tDCS was shown to induce a significant leftward shift of gaze position, which emerged after 6 s of picture exploration and lasted for 200 ms. The present results do not allow us to conclude on a clear efficacy of offline conventional tDCS and HD-tDCS in modulating overt visuospatial attention in an ecological setting. Nonetheless, our findings highlight a complex relationship among stimulated area, focality of stimulation, spatiotemporal aspects of deployment of attention, and the role of individual baseline performance in shaping the effects of tDCS.


NeuroImage ◽  
2021 ◽  
pp. 118846
Author(s):  
Alexia Bourgeois ◽  
Virginie Sterpenich ◽  
Giannina Rita Iannotti ◽  
Patrik Vuilleumier

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Christian H Poth

Intelligent behavior requires to act directed by goals despite competing action tendencies triggered by stimuli in the environment. For eye movements, it has recently been discovered that this ability is briefly reduced in urgent situations (Salinas et al., 2019). In a time-window before an urgent response, participants could not help but look at a suddenly appearing visual stimulus, even though their goal was to look away from it. Urgency seemed to provoke a new visual–oculomotor phenomenon: A period in which saccadic eye movements are dominated by external stimuli, and uncontrollable by current goals. This period was assumed to arise from brain mechanisms controlling eye movements and spatial attention, such as those of the frontal eye field. Here, we show that the phenomenon is more general than previously thought. We found that also in well-investigated manual tasks, urgency made goal-conflicting stimulus features dominate behavioral responses. This dominance of behavior followed established trial-to-trial signatures of cognitive control mechanisms that replicate across a variety of tasks. Thus together, these findings reveal that urgency temporarily forces stimulus-driven action by overcoming cognitive control in general, not only at brain mechanisms controlling eye movements.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ian Krajbich ◽  
Andres Mitsumasu ◽  
Rafael Polania ◽  
Christian C Ruff ◽  
Ernst Fehr

Recent studies have suggested close functional links between overt visual attention and decision making. This suggests that the corresponding mechanisms may interface in brain regions known to be crucial for guiding visual attention – such as the frontal eye field (FEF). Here, we combined brain stimulation, eye tracking, and computational approaches to explore this possibility. We show that inhibitory transcranial magnetic stimulation (TMS) over the right FEF has a causal impact on decision making, reducing the effect of gaze dwell time on choice while also increasing reaction times. We computationally characterize this putative mechanism by using the attentional drift diffusion model (aDDM), which reveals that FEF inhibition reduces the relative discounting of the non-fixated option in the comparison process. Our findings establish an important causal role of the right FEF in choice, elucidate the underlying mechanism, and provide support for one of the key causal hypotheses associated with the aDDM.


2021 ◽  
Vol 15 ◽  
Author(s):  
Guangjie Yuan ◽  
Guangyuan Liu ◽  
Dongtao Wei

Initial romantic attraction (IRA) refers to a series of positive reactions to potential romantic partners at the initial encounter; it evolved to promote mate selection, allowing individuals to focus their mating efforts on their preferred potential mates. After decades of effort, we now have a deeper understanding of the evolutionary value and dominant factors of IRA; however, little is known regarding the brain mechanisms related to its generation and evaluation. In this study, we combined classic event-related potential analysis with dipole-source analysis to examine electroencephalogram (EEG) signals generated while participants assessed their romantic interest in potential partners. The EEG signals were categorized into IRA-engendered and unengendered conditions based on behavioral indicators. We found that the faces elicited multiple late positivities, including P300 over the occipital–parietal regions and late positive potentials (LPPs) over the anterior regions. When compared to faces that did not engender IRA, faces that did engender IRA elicited (1) enhanced P300 over the parietal regions and heightened neural activity in the insula and cingulate cortex and (2) larger LPPs over the anterior regions and heightened neural activity in the orbitofrontal cortex, dorsolateral prefrontal cortex, cingulate cortex, frontal eye field, visual cortex, and insula. These results suggest IRA is generated and evaluated by an extensive brain network involved in emotion processing, attention control, and social evaluations. Furthermore, these findings indicate that P300 and LPP may represent different cognitive processes during IRA.


2021 ◽  
pp. 108202
Author(s):  
Tzu-Yu Hsu ◽  
Jui-Tai Chen ◽  
Philip Tseng ◽  
Chin-An Wang
Keyword(s):  

2021 ◽  
Vol 118 (40) ◽  
pp. e2108922118
Author(s):  
Debaleena Basu ◽  
Naveen Sendhilnathan ◽  
Aditya Murthy

Sequences of saccadic eye movements are instrumental in navigating our visual environment. While neural activity has been shown to ramp up to a threshold before single saccades, the neural underpinnings of multiple saccades is unknown. To understand the neural control of saccade sequences, we recorded from the frontal eye field (FEF) of macaque monkeys while they performed a sequential saccade task. We show that the concurrent planning of two saccade plans brings forth processing bottlenecks, specifically by decreasing the growth rate and increasing the threshold of saccade-related ramping activity. The rate disruption affected both saccade plans, and a computational model, wherein activity related to the two saccade plans mutually and asymmetrically inhibited each other, predicted the behavioral and neural results observed experimentally. Borrowing from models in psychology, our results demonstrate a capacity-sharing mechanism of processing bottlenecks, wherein multiple saccade plans in a sequence compete for the processing capacity by the perturbation of the saccade-related ramping activity. Finally, we show that, in contrast to movement-related neurons, visual activity in FEF neurons is not affected by the presence of multiple saccade targets, indicating that, for perceptually simple tasks, inhibition within movement-related neurons mainly instantiates capacity sharing. Taken together, we show how psychology-inspired models of capacity sharing can be mapped onto neural responses to understand the control of rapid saccade sequences.


2021 ◽  
Author(s):  
Jing Jia ◽  
Zhen Puyang ◽  
Qingjun Wang ◽  
Xin Jin ◽  
Aihua Chen
Keyword(s):  

2021 ◽  
Vol 13 ◽  
Author(s):  
Charlotte Piette ◽  
Marie Vandecasteele ◽  
Clémentine Bosch-Bouju ◽  
Valérie Goubard ◽  
Vincent Paillé ◽  
...  

Although many details remain unknown, several positive statements can be made about the laminar distribution of primate frontal eye field (FEF) neurons with different physiological properties. Most certainly, pyramidal neurons in the deep layer of FEF that project to the brainstem carry movement and fixation signals but clear evidence also support that at least some deep-layer pyramidal neurons projecting to the superior colliculus carry visual responses. Thus, deep-layer neurons in FEF are functionally heterogeneous. Despite the useful functional distinctions between neuronal responses in vivo, the underlying existence of distinct cell types remain uncertain, mostly due to methodological limitations of extracellular recordings in awake behaving primates. To substantiate the functionally defined cell types encountered in the deep layer of FEF, we measured the biophysical properties of pyramidal neurons recorded intracellularly in brain slices issued from macaque monkey biopsies. Here, we found that biophysical properties recorded in vitro permit us to distinguish two main subtypes of regular-spiking neurons, with, respectively, low-resistance and low excitability vs. high-resistance and strong excitability. These results provide useful constraints for cognitive models of visual attention and saccade production by indicating that at least two distinct populations of deep-layer neurons exist.


Sign in / Sign up

Export Citation Format

Share Document