unsupervised methods
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 42)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 7 ◽  
pp. e804
Author(s):  
Marcos Fernández Carbonell ◽  
Magnus Boman ◽  
Petri Laukka

We investigated emotion classification from brief video recordings from the GEMEP database wherein actors portrayed 18 emotions. Vocal features consisted of acoustic parameters related to frequency, intensity, spectral distribution, and durations. Facial features consisted of facial action units. We first performed a series of person-independent supervised classification experiments. Best performance (AUC = 0.88) was obtained by merging the output from the best unimodal vocal (Elastic Net, AUC = 0.82) and facial (Random Forest, AUC = 0.80) classifiers using a late fusion approach and the product rule method. All 18 emotions were recognized with above-chance recall, although recognition rates varied widely across emotions (e.g., high for amusement, anger, and disgust; and low for shame). Multimodal feature patterns for each emotion are described in terms of the vocal and facial features that contributed most to classifier performance. Next, a series of exploratory unsupervised classification experiments were performed to gain more insight into how emotion expressions are organized. Solutions from traditional clustering techniques were interpreted using decision trees in order to explore which features underlie clustering. Another approach utilized various dimensionality reduction techniques paired with inspection of data visualizations. Unsupervised methods did not cluster stimuli in terms of emotion categories, but several explanatory patterns were observed. Some could be interpreted in terms of valence and arousal, but actor and gender specific aspects also contributed to clustering. Identifying explanatory patterns holds great potential as a meta-heuristic when unsupervised methods are used in complex classification tasks.


2021 ◽  
pp. 100486
Author(s):  
Manan Sharma ◽  
Shivam Tiwari ◽  
Gaurav Ruhela ◽  
Suchetana Chakraborty ◽  
Dip Sankar Banerjee

2021 ◽  
pp. 334-351
Author(s):  
Johann Bacher ◽  
Andreas Pöge ◽  
Knut Wenzig
Keyword(s):  

eNeuro ◽  
2021 ◽  
pp. ENEURO.0484-20.2021
Author(s):  
Francesco Cocina ◽  
Andreas Vitalis ◽  
Amedeo Caflisch
Keyword(s):  

Author(s):  
Polina Turova ◽  
Iain Styles ◽  
Vladimir Timashev ◽  
Konstantin Kravets ◽  
Alexander Grechnikov ◽  
...  

Author(s):  
Michael C. Thrun

Although distance measures are used in many machine learning algorithms, the literature on the context-independent selection and evaluation of distance measures is limited in the sense that prior knowledge is used. In cluster analysis, current studies evaluate the choice of distance measure after applying unsupervised methods based on error probabilities, implicitly setting the goal of reproducing predefined partitions in data. Such studies use clusters of data that are often based on the context of the data as well as the custom goal of the specific study. Depending on the data context, different properties for distance distributions are judged to be relevant for appropriate distance selection. However, if cluster analysis is based on the task of finding similar partitions of data, then the intrapartition distances should be smaller than the interpartition distances. By systematically investigating this specification using distribution analysis through the mirrored-density (MD plot), it is shown that multimodal distance distributions are preferable in cluster analysis. As a consequence, it is advantageous to model distance distributions with Gaussian mixtures prior to the evaluation phase of unsupervised methods. Experiments are performed on several artificial datasets and natural datasets for the task of clustering.


Author(s):  
Wentao Chen ◽  
Chenyang Si ◽  
Wei Wang ◽  
Liang Wang ◽  
Zilei Wang ◽  
...  

Few-shot learning is a challenging task since only few instances are given for recognizing an unseen class. One way to alleviate this problem is to acquire a strong inductive bias via meta-learning on similar tasks. In this paper, we show that such inductive bias can be learned from a flat collection of unlabeled images, and instantiated as transferable representations among seen and unseen classes. Specifically, we propose a novel part-based self-supervised representation learning scheme to learn transferable representations by maximizing the similarity of an image to its discriminative part. To mitigate the overfitting in few-shot classification caused by data scarcity, we further propose a part augmentation strategy by retrieving extra images from a base dataset. We conduct systematic studies on miniImageNet and tieredImageNet benchmarks. Remarkably, our method yields impressive results, outperforming the previous best unsupervised methods by 7.74% and 9.24% under 5-way 1-shot and 5-way 5-shot settings, which are comparable with state-of-the-art supervised methods.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
V Thambawita ◽  
T B Haugen ◽  
M H Stensen ◽  
O Witczak ◽  
H L Hammer ◽  
...  

Abstract Study question Can artificial intelligence (AI) algorithms identify spermatozoa in a semen sample without using training data annotated by professionals? Summary answer Unsupervised AI methods can discriminate the spermatozoon from other cells and debris. These unsupervised methods may have a potential for several applications in reproductive medicine. What is known already Identification of individual sperm is essential to assess a given sperm sample’s motility behaviour. Existing computer-aided systems need training data based on annotations by professionals, which is resource demanding. On the other hand, data analysed by unsupervised machine learning algorithms can improve supervised algorithms that are more stable for clinical applications. Therefore, unsupervised sperm identification can improve computer-aided sperm analysis systems predicting different aspects of sperm samples. Other possible applications are assessing kinematics and counting of spermatozoa. Study design, size, duration Three sperm-like paint images were manipulated using a graphic design tool and used to train our AI system. Two paintings have an ash colour background and randomly distributed white colour circles, and one painting has a predefined pattern of circles. Selected semen sample videos from a public dataset with videos obtained from 85 participants were used to test our AI system. Participants/materials, setting, methods Generative adversarial networks (GANs) have become common AI methods to process data in an unsupervised way. Based on single image frames extracted from videos, a GAN (SinGAN) can be trained to determine and track locations of sperms by translating the real images into localization paintings. The resulting model showed the potential of identifying the presence of sperms without any prior knowledge about data. Main results and the role of chance Visual comparisons of localization paintings to real sperm images show that inverse training of SinGANs can track sperms. Converting colour frames into grayscale frames and using grayscale synthetic sperm-like frames showed the best visual quality of generated localization paintings of sperm frames. Feeding real sperm video frames to the SinGAN at different scaling factors, which is defining the resolution of the input image, showed different quality levels of generated sperm localization paintings. A sperm frame given to the algorithm with a scaling factor of one leads to random sperm tracking, while the scales two to four result in more accurate localization maps than scaling levels five to eight. In contrast, scales from six to eight result in an output close to the input frame. The proposed method is robust in terms of the number of spermatozoa, meaning that the detection works well for samples with a low or high sperm count. For visual comparisons, visit our Github page: https://vlbthambawita.github.io/singan-sperm/. The sperm tracking speed of our SinGAN using an NVIDIA 1080 graphic processing unit, is around 17 frames per second, which can be improved by using parallel video processing capabilities. This shows the capability of using this method for real-time analysis. Limitations, reasons for caution Unsupervised methods are hard to train, and the results need human verification. The proposed method will need quality control and must be standardized. Unsupervised sperm tracking SinGAN may identify blurry bright spots as non-existing sperm heads which may restrict the use of SinGAN sperm tracking for sperm counting. Wider implications of the findings: Assessment of semen samples according to the WHO guidelines is subjective and resource-demanding. This unsupervised model might be used to develop new systems for less time-consuming and more accurate evaluation of semen samples. It may also be used for real-time analysis of prepared spermatozoa for use in assisted reproduction technology. Trial registration number N/A


Sign in / Sign up

Export Citation Format

Share Document