electrical equivalent circuit
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 55)

H-INDEX

14
(FIVE YEARS 5)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 170
Author(s):  
Balen K. Faris ◽  
Ary A. Hassan ◽  
Shujahadeen B. Aziz ◽  
Mohamad A. Brza ◽  
Aziz M. Abdullah ◽  
...  

The polymer electrolyte system of methylcellulose (MC) doped with various sodium bromide (NaBr) salt concentrations is prepared in this study using the solution cast technique. FTIR and XRD were used to identify the structural changes in solid films. Sharp crystalline peaks appeared at the XRD pattern at 40 and 50 wt.% of NaBr salt. The electrical impedance spectroscopy (EIS) study illustrates that the loading of NaBr increases the electrolyte conductivity at room temperature. The DC conductivity of 6.71 × 10−6 S/cm is obtained for the highest conducting electrolyte. The EIS data are fitted with the electrical equivalent circuit (EEC) to determine the impedance parameters of each film. The EEC modeling helps determine the circuit elements, which is decisive from the engineering perspective. The DC conductivity tendency is further established by dielectric analysis. The EIS spectra analysis shows a decrease in bulk resistance, demonstrating free ion carriers and conductivity boost. The dielectric property and relaxation time confirmed the non-Debye behavior of the electrolyte system. An incomplete semicircle further confirms this behavior model in the Argand plot. The distribution of relaxation times is related to the presence of conducting ions in an amorphous structure. Dielectric properties are improved with the addition of NaBr salt. A high value of a dielectric constant is seen at the low frequency region.


2021 ◽  
Vol 19 ◽  
pp. 9-15
Author(s):  
Maik Rogowski ◽  
Sven Fisahn ◽  
Heyno Garbe

Abstract. EMC measurements must be carried out in standardized and defined measuring environments. The frequency range between 9 kHz and 30 MHz is a major challenge for measurement technology. The established test sites are designed with an perfect elelctrically conducting ground. For the considered lower frequency range, the metrological validation is carried out with magnetic field antennas in this frequency range. The aim is therefore to take into account the ferromagnetic properties of the ground plane in such a measurement environment and to describe them analytically or numerically with an electrical equivalent circuit diagram. In this article we simplify the model to two loopantennas in Freespace without groundplane to check if the approache with the ECD will work. Therefore we use various numerical field calculation programs in the frequency range up to 30 MHz. The results from simulations are to be checked for correctness with describing them analytically or numerically. For this purpose, a model consisting of two loop antennas was created and simulated in a numerical simulation program. In order to validate the results from the simulation, two different approaches to creating an electrical equivalent circuit (ECD) are examined. The first approach is based on the real equivalent circuit diagram of a coil and the second approach forms a parallel resonant circuit of the first resonance of an antennas input impedance. The focus here is on the mutual inductance, which represents the coupling between the two antennas.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7509
Author(s):  
Usha Philipose ◽  
Yan Jiang ◽  
Brianna Western ◽  
Michael Harcrow ◽  
Chris Littler ◽  
...  

The electrical impedance characteristics of multi-walled carbon nanotube (MWCNTs) networks were studied as a function of CNT concentrations in the frequency range of 1 kHz–1 MHz. The novelty of this study is that the MWCNTs were not embedded in any polymer matrix and so the response of the device to electrical measurements are attributed to the CNTs in the network without any contribution from a polymer host matrix. Devices with low MWCNT packing density (0.31–0.85 µg/cm2) exhibit a frequency independent plateau in the low-frequency regime. At higher frequencies, the AC conductivity of these devices increases following a power law, characteristic of the universal dynamic response (UDR) phenomenon. On the other hand, devices with high MWCNT concentrations (>1.0 µg/cm2) exhibit frequency independent conductivity over the entire frequency range (up to 1 MHz), indicating that conduction in these devices is due to direct contact between the CNTs in the network. A simple single-relaxation time electrical equivalent circuit with an effective resistance and capacitance is used to describe the device performance. The electrical noise measurements on devices with different MWCNT packing densities exhibit bias-dependent low-frequency 1/f noise, attributed to resistance fluctuations.


2021 ◽  
Author(s):  
Jiří Šimurda ◽  
Milena Šimurdová ◽  
Olga Švecová ◽  
Markéta Bébarová

The tubular system of cardiomyocytes plays a key role in excitation-contraction coupling. To determine the area of the tubular membrane in relation to the area of the surface membrane, indirect measurements through the determination of membrane capacitances by electrophysiological measurements are currently used in addition to microscopic methods. Unlike existing electrophysiological methods based on an irreversible procedure (osmotic shock), the proposed approach uses a reversible short-term intermittent increase in the electrical resistance of the extracellular medium. The resulting increase in the lumen resistance of the tubular system makes it possible to determine separately capacitances of the tubular and surface membranes from altered capacitive current responses to subthreshold voltage-clamped rectangular pulses. Based on the analysis of the time course of capacitive current, computational relations were derived which allow to quantify elements of the electrical equivalent circuit of the measured cardiomyocyte including both capacitances. The exposition to isotonic low-conductivity sucrose solution is reversible which is the main advantage of the proposed approach allowing repetitive measurements on the same cell under control and sucrose solutions. In addition, it might be possible to identify changes in both surface and tubular membrane capacitances caused by various interventions. Preliminary experiments in rat ventricular cardiomyocytes (n = 10) resulted in values of the surface and tubular capacitances 72.3 ± 16.4 and 42.1 ± 14.7 pF, respectively, implying the fraction of tubular capacitance/area of 0.36 ± 0.08. We conclude that the newly proposed method provides results comparable to those reported in literature and, in contrast to the currently used methods, enables repetitive evaluation of parameters describing the surface and tubular membranes. It may be used to study alterations of the tubular system resulting from various interventions including associated cardiac pathologies.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6042
Author(s):  
Piotr Wiśniewski ◽  
Jakub Jasiński ◽  
Andrzej Mazurak ◽  
Bartłomiej Stonio ◽  
Bogdan Majkusiak

In this study, the resistive switching phenomenon in Al/SiO2/n++-Si structures is observed and studied by means of DC, small-signal admittance, and complex impedance spectroscopy measurements. Possible transport mechanisms in the high and low resistance states are identified. Based on the results of the applied measurement techniques, an electrical equivalent circuit of the structure is proposed. We discuss the effect of parasitic elements influencing the measurement results and show that a proper model can give useful information about the electrical properties of the device. A good agreement between the characteristics of the proposed equivalent circuit and the experimental data, based on different measurement procedures, confirms the validity of the used methodology and its applicability to the electrical characterization of RRAMs.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2416
Author(s):  
Byung-Hwa Lee ◽  
Jeong-Min Lee ◽  
Ji-Eun Baek ◽  
Jae-Yoon Sim

The electrical equivalent model of an underwater acoustic transducer must be exactly defined in the operating frequency band to improve the driving efficiency between a sonar transmitter and a transducer. This paper used the PSO (particle swarm optimization) algorithm to estimate electrical equivalent circuit parameters of a transducer that has multiple resonant modes. The proposed method used a new fitness function to minimize the estimation error between the measured impedance of the transducer and the estimated impedance. The difference to the previous method is that the proposed method considered interference effects of the adjacent resonant modes. Additionally, this paper analyzed the effective power and separated the mechanical and acoustical resistance by considering the acoustic radiation efficiency of the transducer. As a result, the proposed method estimated all parameters at the resonance points which are influenced by the adjacent resonant modes.


2021 ◽  
Author(s):  
Rushali R. Thakkar

Modelling helps us to understand the battery behaviour that will help to improve the system performance and increase the system efficiency. Battery can be modelled to describe the V-I Characteristics, charging status and battery’s capacity. It is therefore necessary to create an exact electrical equivalent model that will help to determine the battery efficiency. There are different electrical models which will be discussed and examined along with the benefits and demerits. A systematic comparison and analysis using simulation will help us to select an ideal model which will suit best to a specific application.


Sign in / Sign up

Export Citation Format

Share Document