material particle
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 53)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
pp. 1-15
Author(s):  
Lu Lee ◽  
Arash Dahi Taleghani

Summary Lost circulation materials (LCMs) are essential to combat fluid loss while drilling and may put the whole operation at risk if a proper LCM design is not used. The focus of this research is understanding the function of LCMs in sealing fractures to reduce fluid loss. One important consideration in the success of fracture sealing is the particle-size distribution (PSD) of LCMs. Various studies have suggested different guidelines for obtaining the best size distribution of LCMs for effective fracture sealing based on limited laboratory experiments or field observations. Hence, there is a need for sophisticated numerical methods to improve the LCM design by providing some predictive capabilities. In this study, computational fluid dynamics (CFD) and discrete element methods (DEM) numerical simulations are coupled to investigate the influence of PSD of granular LCMs on fracture sealing. Dimensionless variables were introduced to compare cases with different PSDs. We validated the CFD-DEM model in reproducing specific laboratory observations of fracture-sealing experiments within the model boundary parameters. Our simulations suggested that a bimodally distributed blend would be the most effective design in comparison to other PSDs tested here.


2021 ◽  
Vol 2021 (4) ◽  
pp. 137-149
Author(s):  
N.S. Pryadko ◽  
◽  
A.D. Yhnatev ◽  
H.M. Shevelova ◽  
K.V. Ternova ◽  
...  

Based on a numerical simulation of gas flows in an ejector unit and an analysis of grinding chamber acoustic signals, this paper shows ways to increase the efficiency of jet grinding. To prevent ejector speed-up tube wear and to obtain a ground product without impurities, the effect of feeding an additional energy carrier flow on the flow pattern in the speed-up tube of a jet mill was studied. A comparative analysis of the ejector flow pattern as a function of the presence of an additional feed and the speed-up tube shape was carried out. It was shown that the use of a conical nozzle offers a more uniform flow at the ejector outlet. The additional energy carrier feed provides a uniform increase in flow speed and reduces speed-up tube wall wear. The acoustic signals of the mill working zones were related to the jet grinding process parameters, around which a ground product quality control method was developed. The paper presents a technique for determining the material particle size in the energy carrier flow from the results of acoustic monitoring of the process. The technique uses the established relationship between the dispersion of the acoustic signal characteristic frequency and the mass of the corresponding fracture of the mixture in in-flow material transportation. The technique speeds up material particle size determination and improves the finished product quality. An automatic system was developed to control the grinding process by controlling the loading process according to the characteristics of the grinding zone acoustic signals. An operating model of a controlled hopper of a gas jet mill was made. The operability of the control system was verified on a simulation model, which includes a control objet (mill) model and a control system model. It was shown that the system of mill loading automatic control by the characteristics of the grinding zone acoustic signals offers an up to 10 percent increase in mill capacity, which was verified in industrial conditions at Vilnohorsk Mining and Metallurgical Plant.


2021 ◽  
pp. 86-95
Author(s):  
S. Pylypaka ◽  
◽  
A. Nesvidomin ◽  

The motion of material particles on gravitational surfaces, ie the motion of particles on surfaces under the action of its own weight, is used in special devices for their separation by physical and mechanical properties. For this purpose stationary screw surfaces of a steady step are applied. A number of papers have now considered the relationship between the kinematic parameters of motion, the coefficient of friction and the design parameters of the separator, when its surface is a deployable helicoid. The purpose of the study is to investigate helical surfaces with different design parameters in order to improve their separation ability through mathematical and geometric modeling of the process without making surface models. The problem of finding the trajectory of a material particle on the surface under the action of its own weight is preceded by the problem of finding the trajectory on an inclined plane. If a material particle with a certain initial velocity vо and a certain angle of inclination to the horizon falls on an inclined plane, it will move along a certain curve (in the absence of friction and air resistance, the trajectory will be a parabola). A system of equations is obtained, which describes the motion of a material point on the gravitational surface in the general case. If it is created for a specific surface, nonlinear and numerical methods must be used to integrate it. Modern software products allow not only to find the trajectory of the particle, but also to show it on the surface and even make an animation that essentially replaces high-speed shooting. This approach makes it possible to study the kinematic parameters of motion on different helical surfaces without full-scale samples of these surfaces, which significantly reduces the cost of finding the right surfaces. The motion of particles along a helical conoid and a deployable helicoid is considered. Simulation of the motion of a material particle on helical surfaces and its study by modern means of numerical integration and visualization have shown that for different surfaces the nature of the motion of the particle will also be different. When moving on the surface of the helical conoid, the particle in the presence of friction first accelerates, and then stops at a considerable distance from its axis. To prevent this, you need to take a limited compartment of the conoid both in height and on its periphery. When a particle moves on the surface of a deployed helicoid, its velocity becomes constant over time, and the trajectory after that will be a helical line. Key words: particle motion, helical surfaces, helical conoid, deployable helicoid, simulation


2021 ◽  
pp. 129-144
Author(s):  
S. Pylypaka ◽  
◽  
A. Nesvidomin ◽  

The movement of the material on the inclined belt of the conveyor takes place during transportation or its frictional cleaning. For an inclined moving plane (slide), the angle of its inclination to the horizontal plane is decisive. The absolute motion of a particle is the sum of two motions - the portable belt and the relative particle along the belt, so it is affected by the angle between the vectors of the greatest inclination of the plane and the transfer velocity of the plane (tape). The purpose of the study is to determine the motion of a material particle on the conveyor belt for the case when the angle between the vector of the line of greatest inclination of the conveyor plane and the direction of its transfer speed is arbitrary. To do this, the conveyor belt element was depicted as a rectangle with an axis of symmetry drawn along the direction of translational movement. In the initial position, the plane was placed horizontally, so the angle of greatest inclination is absent. In the future, the plane was given an arbitrary location in space due to alternate rotation around the sides bounding its compartment or around the axes of symmetry of the compartment, which is equivalent. The relative and absolute motions of the material particle along the moving web of the conveyor are considered for the case when the line of the greatest inclination of the web plane makes an arbitrary angle with the direction of the portable motion of the web. A system of differential equations of motion is compiled and solved. The obtained results are illustrated graphically. It is established that the nature of the relative motion of a particle on an inclined plane moving rectilinearly and uniformly depends on the direction of the vector of the line of the greatest inclination and the value of the angle of inclination of this plane. If the angle of inclination is less than the angle of friction, then the lateral feed of the particle will eventually stop either on the curved section of the trajectory or on a straight line that is parallel to the line of greatest inclination. The stopping place of the particle depends on the value of the initial velocity. At an angle of inclination of the plane equal to the angle of friction, the particle during the movement along the curved section of the trajectory reduces its initial velocity by half and then moves in a straight line and evenly. If the angle of inclination of the plane is greater than the angle of friction, the particle in relative motion along the curvilinear section of the trajectory first reduces the velocity, and when approaching a rectilinear section, its velocity increases and continues to increase on a rectilinear section of the trajectory. Key words: material particle, conveyor, inclined plane, plane inclination angle, particle velocity


Author(s):  
Mojdeh Nikpour ◽  
Brian A Mazzeo ◽  
Dean Wheeler

Abstract This work is the extension of our previous paper [Nikpour et al., J. Electrochem. Soc. 168 060547, 2021] which introduced the multi-phase smoothed particle (MPSP) model. This model was used to simulate the evolution of the microstructure during the drying and calendering manufacturing processes of four different electrodes. The MPSP model uses particle properties to predict overall film properties such as conductivities and elastic moduli and is validated by multiple experiments. In this work the model is used to investigate the effects of active material particle size, shape, orientation, and stiffness on graphitic anodes. The model predicts that smaller active particles produce higher calendered film density, electronic conductivity, MacMullin number, and Young’s modulus, as compared to larger active particles. Rod-shaped active materials have greater ionic transport and lower electronic transport compared to the disk and sphere shapes, which have similar transport properties. During calendering, disk-shaped particles tend to be oriented horizontally, which decreases through-plane ionic transport. Increasing the stiffness of the active material increases film porosity and composite Young’s modulus, while lowering electronic transport and increasing ionic transport.


Author(s):  
I. Sokolovska ◽  
K. Demin

In the given article the actual modern scientific problem is solved — on the basis of experimental data the mathematical model of movement of a particle in a vortex layer at heat treatment taking into account multiphase of a stream is created. At the current level of development of vortex devices, the relevance of research aimed at in-depth study of processes, improvement of structures and manufacturing technology of individual components has increased. The lack of a strict theory is felt most acutely in the design of systems and installations in which the vortex apparatus is one of the main units. In this regard, the priority remains the development of a theory that allows to obtain a fairly reliable mathematical description of the processes occurring in the vortex chamber of the apparatus. The patterns of propagation of the swirling jet depend on a large number of different conditions (design features of the nozzle, the intensity of the twist) and flow parameters (their density and speed). The flow in the jet has a complex non-automodal character, in connection with which in other works it was considered expedient to use for calculation numerical methods of integration of equations of motion to describe the non-automodal flow in ordinary jets. The disadvantage of these models is that when solving the model of vortex flows go into the model of laminar flows. In this case, many quantities cannot be determined analytically or experimentally. When dividing the flow into the zone of the vortex and the zone of the main vortex, the error in the calculations of the hydrodynamics of the flow, and especially the particles, increases significantly due to the use of different equations of the turbulent viscosity, which is taken for each zone constant. These models are written for a continuous medium and are therefore not suitable for multiphase flow. The peculiarities of the trajectory of the material particle in the vortex apparatus are determined and the dependences are obtained, which allow to control the heat treatment time and on the basis of which it is possible to design the optimal vortex device for drying dispersed materials. The mathematical models obtained in this work can be used in methods of calculations and design of vortex heat and mass transfer devices. The calculations performed according to the equations of the proposed model show satisfactory agreement with the experimental data. When estimating the relative velocities of the particle in the unloading part of the vortex apparatus, it is obvious that the use of equations for laminar flow, which are traditionally used in calculations, leads to significant errors.


Author(s):  
Nikhil Bhagwan Patil

The Gas Profile cutting machine is one of the essential machine tool in the workshop, in this study it has seen that when the high temperature burning flame is in contact with the material particle, the material particle melts and the inter-molecular bonding gets break off to separate the material from each other. In this paper the design of various parts required in gas cutting machine is determined & calculations are interpreted. In this project we have tried to develop a low cost and simple mechanized arrangement for plasma coating on textile rollers.


2021 ◽  
Vol 11 (14) ◽  
pp. 6265
Author(s):  
Alessandra Diotti ◽  
Giovanni Plizzari ◽  
Sabrina Sorlini

Construction and demolition wastes represent a primary source of new alternative materials which, if properly recovered, can be used to replace virgin raw materials partially or totally. The distrust of end-users in the use of recycled aggregates is mainly due to the environmental performance of these materials. In particular, the release of pollutants into the surrounding environment appears to be the aspect of greatest concern. This is because these materials are characterized by a strong heterogeneity which can sometimes lead to contaminant releases above the legal limits for recovery. In this context, an analysis of the leaching behaviour of both CDWs and RAs was conducted by applying a statistical analysis methodology. Subsequently, to evaluate the influence of the particle size and the volumetric reduction of the material on the release of contaminants, several experimental leaching tests were carried out according to the UNI EN 12457-2 and UNI EN 12457-4 standards. The results obtained show that chromium, mercury, and COD are the most critical parameters for both CDWs and RAs. Moreover, the material particle size generally affects the release of contaminants (i.e., finer particles showed higher releases), while the crushing process does not always involve higher releases than the sieving process.


Sign in / Sign up

Export Citation Format

Share Document