unidentified phospholipid
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 95)

H-INDEX

22
(FIVE YEARS 9)

Author(s):  
Yanzhu Zhang ◽  
Shufen He ◽  
Liufei Shi ◽  
Yang Liu ◽  
Deqiang Mao ◽  
...  

An aerobic Gram-stain-negative, curved rod-shaped and non-spore-forming bacterial strain (NBU2194T) was isolated from seawater collected in an intertidal zone in Ningbo, Zhejiang Province, PR China. It was motile though a single polar flagellum and grew at 20–42 °C (optimum, 30 °C), in 0–2.0 % NaCl (0 %, w/v) and at pH 5.0–9.0 (pH 6.0–7.0). The sole respiratory quinone was ubiquinone-8. The major cellular fatty acids were C16 : 0, C16 : 1  ω7c and/or C16 : 1  ω6c. The polar lipids contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified phospholipid and two unidentified aminophosphoglycolipids. A phylogenetic analysis based on 16S rRNA gene sequences and 65 genomic core genes showed that strain NBU2194T formed a distinct lineage in the family Alteromonadaceae . The genome of strain NBU2194T was 4 913 533 bp with a DNA G+C content of 43.9 mol% and coded 3895 genes, 12 rRNA genes and 47 tRNA genes. The average nucleotide identity, amino acid identity and digital DNA–DNA hybridization values between strain NBU2194T and related species of Alteromonadaceae were below the threshold limit for prokaryotic species delineation. NBU2194T could be distinguished from other genera in the family Alteromonadaceae based on phenotypic, chemotaxonomic and genomic characteristics. On the basis of the polyphasic taxonomic evidence collected in this study, strain NBU2194T is considered to represent a novel genus and species in the family Alteromonadaceae , for which the name Paraneptunicella aestuarii is proposed. The type strain is NBU2194T (=KCTC 82442T=GDMCC 1.2217T).


Author(s):  
Geeta Chhetri ◽  
Taegun Seo

A red-pigmented, aerobic, motile by gliding, pleomorphic to long-rods and divided by budding bacterium, Gram-stain negative bacterium, designated JH31T, was isolated from stream water of Jeongbang Waterfall, famous feature of Jeju Island, Republic of Korea. The cells grew at 9–40 °C (optimum, 28–30 °C), at pH 5.0–10.0 (pH 6.5–7.5) and with 0–6% NaCl (0% NaCl). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain JH31T forms a lineage within the family Hymenobacteriaceae and clusters with its closest related species Pontibacter virorsus KCTC 42941T (98.1%), Pontibacter salisaro KACC 16885T (98.0%), Pontibacter amylolyticus JCM 19653T (97.2%), Pontibacter ramchanderi KACC 17384T (97.2%) and Pontibacter lucknowensis DM9T (96.4%). Strain JH31T produced carotenoid-type pigments but no flexirubin-type pigments. The genome was 4117105 bp long with 18 contigs and 3509 protein-coding genes. The DNA G+C content was 49.7 mol%. The digital DNA–DNA hybridization and average nucleotide identity values between the genome sequence of strain JH31T and its closely related reference strains were less than 19 and 72%, respectively. The draft genome of strain JH31T contained vital gene clusters involved in resistance against various metals, antibiotics, toxic compounds and radiation. The respiratory quinone of strain JH31T was menaquinone 7 and the predominant cellular fatty acids were iso-C15:0, and summed feature 4 (comprising iso-C17:1 I and/or anteiso B). The major polar lipids were phosphatidylethanolamine, three unidentified glycolipids, one unidentified phospholipid, one unidentified phosphoglycolipid and one unidentified aminoglycolipid. The phylogenetic, physiochemical and biochemical data showed that strain JH31T should represent a novel species in the genus Pontibacter , for which the name Pontibacter aquaedesilientis sp. nov. is proposed. The type strain for this novel species is JH31T (KACC 21705T=NBRC 114480T).


Author(s):  
Hongxiang Liu ◽  
Lijing Lu ◽  
Sijin Wang ◽  
Meng Yu ◽  
Xiaoyun Cao ◽  
...  

A Gram-stain-positive, facultatively anaerobic, non-motile, endospore-forming and rod-shaped bacterium, occurring singly or in pairs, designated TB2019T, was isolated from environmental monitoring samples of corridor air collected at the Tianjin Institute for Drug Control, Tianjin Province (PR China). The isolate was able to grow at 15–40 °C (optimum growth at 37 °C), pH 6.0–8.0 (pH 7.0) and in the presence of 0–2% (w/v) NaCl (0% NaCl). Comparison of 16S rRNA gene sequences indicated that TB2019T was most closely related to Paenibacillus typhae CGMCC 1.11012T (98.63%), Paenibacillus albidus Q4-3T (98.19%), Paenibacillus borealis DSM 13188T (97.55%), Paenibacillus helianthi P26ET (97.33%) and Paenibacillus odorifer DSM 15391T (97.19%). The digital DNA–DNA hybridization and the average nucleotide identity values between TB2019T and the five type strains mentioned above ranged from 20.7 to 25.0% and 75.2 to 81.3%, respectively, and the genomic DNA G+C content was 49.52 mol%. The diagnostic cell-wall sugar was ribose, and the diagnostic amino acid was meso-diaminopimelic acid. The polar lipids of TB2019T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified aminophospholipids and one unidentified phospholipid. MK-7 was the predominant menaquinone, and anteiso-C15:0 (30.6%) was the major fatty acid. Based on the polyphasic taxonomic data, strain TB2019T represents a novel species of the genus Paenibacillus , for which the name Paenibacillus tianjinensis sp. nov. is proposed. The type strain is TB2019T (=CICC 25065T=JCM 34610T).


2021 ◽  
Author(s):  
Ram Hari Dahal ◽  
Jungmin Kim ◽  
Dhiraj Kumar Chaudhary ◽  
Dong-Uk Kim ◽  
Hyein Jang ◽  
...  

Abstract A white-colony-forming, aerobic, motile and Gram-stain-negative bacterium, designated G-1-2-2T was isolated from soil of agriculture field near Kyonggi University, Republic of Korea. Strain G-1-2-2T synthesize the polyhydroxybutyrate and could grow at 10–35°C. The phylogenetic analysis of its 16S rRNA gene sequence, strain G-1-2-2T formed a lineage within the family Comamonadaceae and clustered as a member of the genus Ramlibacter. The 16S rRNA gene sequence of strain G-1-2-2T showed high sequence similarities with Ramlibacter ginsenosidimutans BXN5-27T (97.9%), Ramlibacter monticola G-3-2T (97.9%) and Ramlibacter alkalitolerans CJ661T (97.4%). The sole respiratory quinone was ubiquinone-8 (Q-8). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, and an unidentified phospholipid. The principal cellular fatty acids were C16:0, cyclo-C17:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The genome of strain G-1-2-2T was 7,200,642 bp long with 13 contigs, 6,647 protein-coding genes, and DNA G+C content of 68.9%. The average nucleotide identity and in silico DNA–DNA hybridization values between strain G-1-2-2T and closest members were ≤81.2 and 24.1%, respectively. The genome of strain G-1-2-2T showed eight putative biosynthetic gene clusters responsible for various secondary metabolites. Genome mining revealed the presence of atoB, atoB2, phaS, phbB, phbC, bhbD genes in the genome which are responsible for polyhydroxybutyrate biosynthesis. Based on these data, strain G-1-2-2T represents a novel species in the genus Ramlibacter, for which the name Ramlibacter agri sp. nov. is proposed. The type strain is G-1-2-2T (= KACC 21616T = NBRC 114389T).


Author(s):  
Pawina Kanchanasin ◽  
Wongsakorn Phongsopitanun ◽  
Masahiro Yuki ◽  
Takuji Kudo ◽  
Moriya Ohkuma ◽  
...  

An actinomycete strain, LCR2-06T, isolated from a lichen sample on rock collected from Chiang Rai Province (Pong Phra Bat Waterfall), Thailand, was characterized using a polyphasic approach. The strain grew at 25–45 °C, pH 6–11 and on International Streptomyces Project 2 agar plate with 5 % (w/v) NaCl. It contained meso-diaminopimelic acid as the diamino acid in whole-cell hydrolysates. Rhamnose, ribose, xylose, madurose, glucose and galactose were detected as whole-cell sugar hydrolysates. Mycolic acids were absent. The N-acyl type of muramic acid was acetyl. The strain contained C16 : 0, TBSA 10-methyl C18 : 0 and 2-hydroxy C16 : 0 as the predominant fatty acids and MK-9(H6), MK-9(H4) and MK-9(H8) as the major menaquinones. The major polar lipids were diphosphatidylglycerol, phosphatidylinositol and unidentified phospholipid. The draft genome of strain LCR2-06T was closely related to Actinomadura barringtoniae TBRC 7225T (99.2 %), Actinomadura nitritigenes NBRC 15918T (98.8 %), Actinomadura montaniterrae TISTR 2400T (98.5 %) and Actinomadura physcomitrii JCM 33455T (97.9 %). The draft genome of LCR2-06T was 11.1 Mb with 10 588 coding sequences with an average G+C content of 72.7 mol%. Results of genomic analysis revealed that the ANIb and ANIm values between strain LCR2-06T and A. montaniterrae TISTR 2400T were 90.0 and 92.0 %, respectively. The digital DNA–DNA hybridization value was 43.9 % in comparison with the draft genome of A. montaniterrae TISTR 2400T. The strain produced an antibacterial compound active against Bacillus subtilis ATCC 6633 and Kocuria rhizophila ATCC 9341. The results of taxonomic analysis suggested that strain LCR2-06T represented a novel species of the genus Actinomadura for which the name Actinomadura violacea sp. nov. is proposed. The type strain is LCR2-06T (=JCM 33065T=KCTC 49547T=NBRC 114810T=LMG 32136T=TISTR 2935T).


Author(s):  
Yongping Zhang ◽  
Xiaoya Peng ◽  
Kun Qin ◽  
Jia Liu ◽  
Qiang Xu ◽  
...  

Strain Q3-56T, isolated from Arctic tundra soil, was found to be a Gram-stain-negative, yellow-pigmented, oxidase- and catalase-positive, non-motile, non-spore-forming, rod-shaped and aerobic bacterium. Strain Q3-56T grew optimally at pH 7.0 and 28 °C. The strain could tolerate up to 1 % (w/v) NaCl with optimum growth in the absence of NaCl. The strain was not sensitive to oxacillin and ceftazidime. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Q3-56T belonged to the genus Dyadobacter . Strain Q3-56T showed the highest sequence similarities to Dyadobacter luticola T17T (96.58 %), Dyadobacter ginsengisoli Gsoil 043T (96.50 %), Dyadobacter flavalbus NS28T (96.43 %) and Dyadobacter bucti QTA69T (96.43 %). The predominant respiratory isoprenoid quinone was identified as MK-7, The polar lipid profile of strain Q3-56T was found to contain one phosphatidylethanolamine, three unidentified aminolipids, three unidentified lipids and one unidentified phospholipid. The G+C content of the genomic DNA was determined to be 49.1 mol%. The main fatty acids were summed feature 3 (comprising C16 : 1  ω7c/C16 : 1  ω6c), iso-C15 : 0, C16 : 1  ω5c and iso-C16 : 1 3-OH. On the basis of the evidence presented in this study, a novel species of the genus Dyadobacter , Dyadobacter sandarakinus sp. nov., is proposed, with the type strain Q3-56T (=CCTCC AB 2019271T=KCTC 72739T). Emended descriptions of Dyadobacter alkalitolerans , Dyadobacter koreensis and Dyadobacter psychrophilus are also provided.


Author(s):  
Dan-Feng Liu ◽  
Shao-Qi Chen ◽  
Hong-Fei Wang ◽  
Yuan-Guo Xie ◽  
Rui Gao ◽  
...  

A Gram-stain-positive, non-motile and coccus-shaped bacterium, designated strain LNNU 331112T, was isolated from the composite rhizosphere soil of the halophyte Suaeda aralocaspica (Bunge) Freitag and Schütze, which was collected in Xinjiang, north-west China. Growth occurred at 10–45 °C, pH 6.0–11.0 and in the presence of 0–10 % NaCl (w/v). Phylogenetic analysis based on the 16S rRNA gene sequence suggested that strain LNNU 331112T belonged to the genus Hoyosella and showed 95.6, 95.5 and 95.4 % sequence similarities to Hoyosella altamirensis DSM 45258T, Hoyosella subflava CGMCC 4.3532T and Hoyosella rhizosphaerae CGMCC 1.15478T, respectively. The estimated digital DNA–DNA hybridization relatedness values between strain LNNU 331112T and the type strains of H. altamirensis DSM 45258T, H. subflava CGMCC 4.3532T and H. rhizosphaerae CGMCC 1.15478T were 18.9, 19.3 and 18.3 %, respectively. The average nucleotide identity values between strain LNNU 331112T and H. altamirensis DSM 45258T, H. subflava CGMCC 4.3532T and H. rhizosphaerae CGMCC 1.15478T were 72.6, 72.7 and 72.3 %, respectively. The genome sequence of strain LNNU 331112T showed 69.0–72.3 % average amino acid identity values in comparison with the related genome sequences of three validly published Hoyosella species. The genome of strain LNNU 331112T was 3.47 Mb, with a DNA G+C content of 68.4 mol%. A total of 3182 genes were identified as protein-coding in strain LNNU 331112T. Genomic analysis revealed that a number of genes involved in osmotic pressure regulation, intracellular pH homeostasis and potassium (K+) uptake protein were found in strain LNNU 331112T. The predominant menaquinones were MK-8 (44.6 %) and MK-7 (55.4 %), which differentiated strain LNNU 331112T from other three recognized Hoyosella species. Major fatty acids (>10 %) were C17 : 1 ω8c (33.8 %), C16 : 0 (23.3 %), C17 : 0 (12.8 %) and summed feature 3 (12.9 %), which also clearly separated strain LNNU 331112T from three recognized Hoyosella species. The polar lipid profile of strain LNNU 331112T included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, one unidentified glycolipid, one unidentified phospholipid and two unidentified lipids. According to the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain LNNU 331112T is considered to represent a novel species of the genus Hoyosella , for which the name Hoyosella suaedae sp. nov. is proposed. The type strain is LNNU 331112T (=KCTC 39808T=CGMCC 1.17107T=DSM 103463T).


Author(s):  
Rosyada Amran Amrina ◽  
Go Furusawa ◽  
Nyok-Sean Lau

A novel rod-shaped, Gram-stain-negative, strictly aerobic and alginate-degrading marine bacterium, designated CCB-QB4T, was isolated from a surface of algal turf collected from a coastal area of Penang, Malaysia. The cells showed motility by a lateral flagellum. The rod-shaped cells formed long chains end-to-end. Phylogenetic analysis based on the 16S rRNA gene sequence of strain CCB-QB4T showed 94.07, 92.69, 91.52 and 90.90 % sequence similarity to Algibacillus agarilyticus RQJ05T, Catenovulum maritimum Q1T, Catenovulum agarivorans YM01T and Catenovulum sediminis D2T, respectively. Strain CCB-QB4T formed a cluster with A. agarilyticus RQJ05T. Strain CCB-QB4T was catalase-negative, oxidase-positive, and degraded agar, alginate, and starch. Cell growth was observed at 15–40 °C, at pH 7.0–10.0 and in the presence of 1–6 % (w/v) NaCl and glucose. The major fatty acids were summed feature 3 (C16 : 1 ω7c/iso-C15 : 0 2-OH), C16 : 0 and C18 : 1 ω7c. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, two unidentified glycolipids, an unidentified phospholipid and unidentified lipid. The major respiratory quinone was ubiquinone-8. The genomic DNA G+C content was 46.7 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain CCB-BQ4T represents a novel species in a new genus, for which the name Saccharobesus litoralis gen. nov., sp. nov. is proposed. The type strain is CCB-QB4T (=JCM 33513T=CCB-MBL 5008T).


Author(s):  
Yuparat Saimee ◽  
Kannika Duangmal

A novel actinobacterium, designated strain DW4-2T, was isolated from duckweed (Spirodela sp.) collected from an agricultural pond in Kasetsart University, Bangkok, Thailand. The morphological, chemotaxonomic and phylogenetic characteristics were consistent with its classification in the genus Streptomyces . Strain DW4-2T showed the highest 16S rRNA gene sequence similarity values to Streptomyces qinglanensis DSM 42035T (98.5 %), S treptomyces smyrnaeus DSM 42105T (98.4 %) and Streptomyces oryzae S16-07T (98.4 %). Digital DNA–DNA hydridization and average nucleotide identity values between the genome sequences of strain DW4-2T with S. qinglanensis DSM 42035T (29.8 and 87.8 %), S. smyrnaeus DSM 42105T (33.1 and 89.0 %) and S. oryzae S16-07T (33.0 and 88.9 %) were below the thresholds of 70 and 95–96 % for prokaryotic conspecific assignation. Chemotaxonomic data revealed that strain DW4-2T possessed MK-9(H6) and MK-9(H8) as the predominant menaquinones. It contained ll -diaminopimelic acid as the diagnostic diamino acid and glucose, ribose and trace amount of madurose in whole-cell sugars. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, an unidentified aminolipid, an unidentified lipid and an unidentified phospholipid. The predominant cellular fatty acids were anteiso-C17 : 0, anteiso-C15 : 0 and iso-C16 : 0. The genomic DNA size of the strain DW4-2T was 7 310 765 bp with DNA G+C content 71.0 mol%. Genomic analysis of the genome indicated that the strain DW4-2T had the potential to produce bioactive compounds. On the basis of these genotypic and phenotypic data, it is supported that strain DW4-2T represents a novel species of the genus Streptomyces , for which the name Streptomyces spirodelae sp. nov. is proposed. The type strain is strain DW4-2T (=TBRC 13095T=NBRC 114803T).


Author(s):  
Huibin Lu ◽  
Fei Liu ◽  
Tongchu Deng ◽  
Meiying Xu

Twelve Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and motile strains (CY7WT, CY18WT, CY22WT, FT31WT, FT137WT, FT147WT, BYS50W, BYS107WT, LFS511WT, LX15WT, LX22WT and NL8WT) were isolated from streams in China. Comparisons based on 16S rRNA gene sequences indicated that these strains take species of genus Undibacterium as close neighbours. The reconstructed phylogenetic and phylogenomic trees also showed that these strains cluster with species of genus Undibacterium together. The genome G+C contents of these strains were in the range of 45.3 to 53.3 mol%. The calculated pairwise OrthoANIu values and digital DNA–DNA hybridization values among these strains and related strains were in the range of 70.4 to 94.1% and 19.3 to 55.3% except that the values between strains CY7WT and BYS50W were 99.0 and 91.8 %, respectively. Q-8 was their predominant respiratory quinone. C16 : 1  ω7c and C16 : 0 were their major fatty acids. Their polar lipids profiles were similar, including phosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid and two kinds of unidentified aminolipids. Combining polyphasic taxonomic characteristics and phylogenetic relationships, twelve strains should represent eleven independent novel species of genus Undibacterium , for which the names Undibacterium baiyunense sp. nov. (type strain BYS107WT=GDMCC 1.2453T=KCTC 82653T), Undibacterium curvum sp. nov. (type strain CY22WT=GDMCC 1.1906T=KACC 21951T), Undibacterium fentianense sp. nov. (type strain FT137WT=GDMCC 1.2456T=KCTC 82656T), Undibacterium flavidum sp. nov. (type strain LX15WT=GDMCC 1.1910T=JCM 34286T), Undibacterium griseum sp. nov. (type strain FT31WT=GDMCC 1.1908T=KACC 21953T), Undibacterium hunanense sp. nov. (type strain CY18WT=GDMCC 1.1904T=KACC 21949T), Undibacterium luofuense sp. nov. (type strain LFS511WT=GDMCC 1.2458T=KCTC 82658T), Undibacterium nitidum sp. nov. (type strain LX22WT=GDMCC 1.1912T=KACC 21957T), Undibacterium rivi sp. nov. (type strain FT147WT=GDMCC 1.2457T=KCTC 82657T), Undibacterium rugosum sp. nov. (type strain CY7WT=GDMCC 1.1903T=KACC 21961T) and Undibacterium umbellatum sp. nov. (type strain NL8WT=GDMCC 1.1915T=KACC 21960T) are proposed.


Sign in / Sign up

Export Citation Format

Share Document